Signal detection theory |
Top Previous Next |
Signal detection theory summaries
In general: classify as hits, misses, false alarms, correct rejections hit rate H = P(response | target) = hits/(hits+misses) false alarm rate F = P(response | non-target) = FAs/(FAs+CRs)
Yes/no tasks (Macmillan & Creelman, 1991, "Detection theory: A user's guide", Cambridge University Press, pp. 9 and 33): sensitivity d' = z(H) - z(F) bias or criterion c = -0.5[z(H) + z(F)] where z() is the inverse normal distribution function
Two-alternative-forced-choice (2AFC) tasks (Macmillan & Creelman, 1991, "Detection theory: A user's guide", p. 121): d' = (1/sqrt(2))[z(H) - z(F)] c = as for yes/no tasks = -0.5[z(H) + z(F)]
The CPT is an example of a yes/no task (only one stimulus offered at one time).
Corrections for proportions of 0 and 1 (M&C1991 p10): several methods are possible; in our database query we'll use 0 becomes 1/(2N) 1 becomes 1 - 1/(2N)
Draft SQL query CPT_SDT: SELECT DateTimeCode, Subject, Box, ModuleNumber, Stage, AttemptAtStage, COUNT(*) as NumTrials, SUM(IIF(Hit,1,0)) as Hits, SUM(IIF(Miss,1,0)) as Misses, SUM(IIF(FalseAlarm,1,0)) as FalseAlarms, SUM(IIF(CorrectRejection,1,0)) as CorrectRejections, Hits/(Hits+Misses) As HitRate, FalseAlarms/(FalseAlarms+CorrectRejections) As FalseAlarmRate, IIF(HitRate=0,1/(2*NumTrials),IIF(HitRate=1,1-1/(2*NumTrials),HitRate)) as CorrectedHitRate, IIF(FalseAlarmRate=0,1/(2*NumTrials),IIF(FalseAlarmRate=1,1-1/(2*NumTrials),FalseAlarmRate)) as CorrectedFalseAlarmRate, InverseNormalCDF(CorrectedHitRate) AS Z_H, InverseNormalCDF(CorrectedFalseAlarmRate) AS Z_F, (Z_H-Z_F) AS D, -0.5*(Z_H+Z_F) AS C FROM CPT_Results GROUP BY DateTimeCode, Subject, Box, ModuleNumber, Stage, AttemptAtStage ;
For a two-alternative task (e.g. conditional visual discrimination), replace the bit in bold with (Z_H-Z_F)/SQR(2) AS D, and change the source table appropriately. |