
UNIX: System administration
A Concise Guide

By Rudolf Cardinal
Revision dated 18th August 1995

UNIX System Administration

Rudolf Cardinal, August 1995 2

INTRODUCTION 7

WHAT IS UNIX? 7

BASICS OF THE UNIX COMMAND LINE 7

Finding files: find 7

Examining a directory: ls 7

Deleting, copying and renaming files 7

Creating and deleting directories 8

Moving around directories 8

Viewing and editing files 8

Pattern searching: grep 8

Editing files: a brief guide to vi 10
Cursor movement 10
Altering the file: basics 11
Rearranging and duplicating text 11
Miscellaneous 12
Commands preceded by a colon (ed commands) 12

BOOTING A UNIX MACHINE 13

STOPPING A UNIX MACHINE 13

FLUSHING THE CACHE 13

BROADCASTING MESSAGES TO PEOPLE 13

WHICH MACHINE AM I ON? 13

HOW UNIX STARTS 14

UNIX SECURITY; USERS, GROUPS AND OWNERSHIP 14

The superuser, root 14

The su command 14

THE UNIX FILE SYSTEM 15

UNIX System Administration

Rudolf Cardinal, August 1995 3

Filenames and Wildcards 15

File ownership; output of ls -al 15

Changing the mode (flags) of a file 15

Changing the ownership of a file 16

Drives – concept, mounting and dismounting 17

/etc/fstab 18

What’s CHKDSK in UNIX? 18

Links 18

NFS – beware 19

A little look at system files and directories 20

MANAGING USER ACCOUNTS 21

Adding users 21

Deleting users 21

Adding groups 21

Removing groups 21

Changing passwords 21

The /etc/passwd file 21

The /etc/group file 22

Getting information 22

Advanced security 22

Login banners 23

Message of the day 23

Trusted path 23

Disabling login 23

MANAGING PROCESSES. SNOOPING AND KILLING ERRANT TASKS. 24

First, some theory. 24
What is a process? 24
Signals 24
Pipes 24
Sockets 24
Forking 25

UNIX System Administration

Rudolf Cardinal, August 1995 4

Swapping out 25

Finding out about processes 26
w – what are people doing? 26
ps – process status 26

Sending signals to processes; how to kill processes 28

Be nice 28

Monitor thyself for evil 29

Other status commands 29

DEVICES 30

Making devices 30

Null 30

Memory 30

Disks 31

Tapes 31

Terminals 31

LAT configuration 33

Printers 34

DAEMONS 37

Concept 37

A brief summary of common daemons 37

CRON: SCHEDULING PROCESSES, SUCH AS BACKUPS 38

Format of /etc/crontab 38

The at and batch commands 38

PRINTING 40

The lpr command – print files 40

The lprm command – remove jobs from printer queue 40

The lpq command – examine spool queue 40

The lpstat command – printer status information 40

UNIX System Administration

Rudolf Cardinal, August 1995 5

The lpc command – line printer control 41

USING TAPE DRIVES 42

Magnetic tape manipulation: mt 42

Backing up data: dump 42

Restoring data: restore 43

Archive manipulation: dd, cpio, tar 45
dd 45
cpio 45
tar 46

NETWORKING 48

Introduction 48
TCP/IP: addressing 48
LANs and beyond: address resolution, routing and complex services 49
Internet addresses for humans 49

Configuring UNIX 51
The simple way: using netsetup 51
Essential files 51
Interface configuration: ifconfig 52
The Internet daemon, inetd 53
Routers 54
NFS – the Network File System 55
How a typical network starts 61
Remote booting – the bootp protocol 62
MOP file retrieval – mop_mom 62

Some important client programs for users and administrators 63
ftp (requires ftpd) 63
ping (administrative) 66
telnet (requires telnetd) 66
finger (requires fingerd) 66
rlogin (requires rlogind) 66
rsh (requires rshd) 66
netstat (administrative) 67
ruptime (administrative) (requires rwhod) 67

REBUILDING THE KERNEL 68

Editing the configuration file 68

Generating the kernel and activating it 71

SOFTWARE SUBSETS 72

SHELLS AND SHELL SCRIPTS 73

UNIX System Administration

Rudolf Cardinal, August 1995 6

What is a shell? 73

Simple and background commands 73

Standard input, output, error. Redirection and pipes. 73

Paths and environment variables 74

Shell scripts 75

The sh command language in brief 76

Invoking shells, login scripts and restricted shells 78

Two lines about csh 79

ACCOUNTING 80

Login accounting 80

Command usage accounting 80

Printer accounting 81

ERROR LOGS 82

MAIL 84

OTHER HANDY COMMANDS: THINGS LEFT OVER 85

GETTING HELP: WHERE TO GO FROM HERE 87

The online manual, man 87

About the text manuals 87
The ULTRIX manuals and their abbreviations 87

UNIX System Administration

Rudolf Cardinal, August 1995 7

Introduction
This is a guide for system administrators. It assumes reasonable familiarity with syntactic definitions
and command-line operating systems in general, and some skill with the basics of UNIX (cataloguing
disks, editing files and so forth). It also assumes you have full authority over your system. I don’t
usually mention when superuser authority is required for a particular command: in general, anything
that affects other users, their processes or their data requires root authority.

I have based this guide on ULTRIX from Digital; this is a BSD UNIX clone.

This is primarily a reference guide, to look things up in and not to read from cover to cover.

What is UNIX?
UNIX is a multiuser operating system. It is organised into a kernel, the main “program” that is the
operating system, and a set of utility programs found on disk. It provides facilities for many users to
run programs simultaneously, and to keep files on the system, with no impact on each other aside
from the system’s apparent speed. In order to administer UNIX there is a superuser, “root”, with
complete authority over all aspects of the system. That’s you, that is.

Basics of the UNIX command line
I don’t give full details of these commands, just the most useful options. See Getting Help for details
of the manuals.

Finding files: find
Simplified syntax:

find startdirectory -name filename -print

Without the -print command, you don’t see the result.
Examples:

find / -name rc.local -print
find /usr -name ’*.c’ -print

Examining a directory: ls
ls Basic catalogue
ls -al Full details
ls filespec About a given file/group of files.
ls -al | grep ’^d’ List all directories.

Deleting, copying and renaming files
rm filename Deletes.
cp source dest Copies. The -r option allows recursive copying.
mv source dest Moves or renames. See mv(1).

These can take the parameters – (“everything that follows is a filename”, so you can use filenames
starting with -); -f (force); -i (interactive mode) and -r (recurse subdirectories). The mv command
cannot take -r. The cp command can also take -p (preserve file dates/times/modes). Possibly the
worst thing you can do to UNIX is to issue the command “rm -r *” from the root directory while
you are superuser.

UNIX System Administration

Rudolf Cardinal, August 1995 8

Creating and deleting directories
mkdir directory Makes a directory
rmdir directory Removes a directory

Moving around directories
cd [directory] Change to directory. If no directory is specified, the directory specified

in the environment variable $HOME (the user’s home directory) is used
instead.

pwd Print working directory.

Viewing and editing files
cat filename Same as type in DOS.
more filename Same as more in DOS; equivalent to cat filename | more, which

also works. Also equivalent to more < filename. Space for next page,
q to quit. If you use more as “more filename”, you can also press b to
move back a page; the other forms of the command use piped input
and b doesn’t work.

head filename Looks at the top of a file. Can use as in head –30 filename, to look
at the top 30 lines.

tail filename Looks at the end of a file. Can specify line count as for head.

Pattern searching: grep
grep stands for “get regular expression”. grep can be used, like more, as a filter (command |
grep options), a place to route input (grep options < file) or as a straight command (grep
options file).

Syntax:
grep [options] expression [file]

When specifying a pattern (“expression”) to match, there are many special characters and wildcards:
see grep(1) for details of these and all the other options. The following patterns are the most useful:

Pattern Matches
^ beginning of a line
$ end of a line
. any character
normal character that character
[string] any character from string; you can use ranges as in [a-z0-9]
* zero or more characters

Examples:

ls -al | grep ’^d’ Catalogues all directories in the current directory by
searching for lines in the output of “ls -al” that
begin with a d.

grep fish tree.c Looks for the word “fish” in the file tree.c.
grep execute *.h Looks for “execute” in all files ending “.h”. If

more than one file satisfies this criterion, its name
will be shown in the output from grep so you
know where to look.

grep fish < tree.c Same as “grep fish tree.c”
ps -aux | grep ’^oracle’ | more Gives process status information on all processes

owned by oracle , pausing between pages.

UNIX System Administration

Rudolf Cardinal, August 1995 9

For more complex pattern-matching, use egrep(1) or fgrep(1).

UNIX System Administration

Rudolf Cardinal, August 1995 10

Editing files: a brief guide to vi
Fire it up with vi filename.
For read-only access, use view filename.

Pronounced “vee-eye”, vi exists in two states: edit mode and command mode. You begin in
command mode. At any time, you can return to command mode by pressing Escape. (If you’re on a
VT terminal and you get a back quote, you can either go into the terminal’s keyboard setup and make
that key send ESC, or you can use Ctrl-[instead of Escape. Escape and Ctrl-[both send character
number 27, which is what you’re after.) If you were in command mode anyway, it beeps at you.

Now for some commands – note that these are all case-sensitive! By the way, ^X is a convention for
Ctrl-X.

Cursor movement

SPACE Advance the cursor one position
^B Move backward a page. (A count specifies repetition.)
^D Scrolls down. (A count specifies number of lines and is remembered for future ^D and

^U commands. Default is a half-page.)
^E Exposes another line at the bottom
^F Move forward a page. (A count specifies repetition.)
^H Backspace the cursor
^J Move cursor down (same as down arrow)
^M A carriage return advances to the next line at the first non-white character. Given a

count, it advances that many lines (as in 5^M). During an insert, it causes the insert to
continue onto another line.

^N Next line, same column (same as down arrow)
^P Previous line, same column (same as up arrow)
^U Scrolls up (see ̂D)
^Y Exposes another line at the top
0 Go to start of line
^ First non-white on line
$ End of line
% Finds matching bracket, brace or box. Useful for programming!
) Forward sentence
} Forward paragraph
]] Forward section
(Backward sentence
{ Backward paragraph
[[Backward section
+ Next line, at the beginning
– Previous line, at the beginning
/ Scan for a string (that follows the /), forwards
? Scan backwards
B Back a word, ignoring punctuation
H Home screen line
M Middle screen line
<line>G Go to a particular line. So 1G goes to the top of the document; 100G goes to line

100. If you type G on its own, you go to the end of the file.
L Last screen line
W Forward a word, ignoring punctuation
b Back a word
e End of current word
h Move left

UNIX System Administration

Rudolf Cardinal, August 1995 11

j Move up
k Move down. If you’re lucky (!) the arrow keys will also work.
l Move right
n Scan for next instance of the pattern specified with / or ?
w Word after this word

Altering the file: basics

i Insert text before the cursor
I Insert text at start of line
a Append text after cursor
A Append text at end of line
d Deletes the object you specify. Examples:

d0 Delete to start of line
d$ Delete to end of line
dd Delete line

^@ Not a command character. If typed as the first character of an insertion it is replaced
with the last text inserted (up to 128 characters), and the insert terminates. A ^@
(ASCII 0) cannot be part of the file.

^I Inserts a tab, during insert.
^Q Not a command character. In input mode, ^Q quotes the next character (same as ^V),

except some terminal drivers ‘eat’ ^Q so the editor never sees it.
^T Not a command character. During an insert, with autoindent set and at the

beginning of a line, inserts shiftwidth white space.1

^V Not a command character. In input mode, quotes the next character so that it is
possible to insert non-printing and special characters into the file.

^W Erase a word during an insert (deleted characters remain on the display).
^Z If supported by the Unix system, stops the editor.
^[(esc) Cancels partially formed commands; terminates input on the last line; ends

insertions; if editor was already in command mode, rings the bell.
erase (Usually ̂ H or #) Erases a character during an insert
kill (Usually @, ̂ X or ̂ U) Kills the insert on this line
O Opens and inputs new lines, above the current
o Opens and inputs new lines, below the current
U Undoes the changes you made to the current line
u Undoes the last change
c Changes the object you specify to the following text

Rearranging and duplicating text

fx Find x forward in line
p Put text back, after cursor or below current line
y Yank operator, for copies and moves
tx Up to x forward, for operators
Fx f backward in line
P Put text back, before cursor or above current line
Tx t backward in line

1 vi looks at an environment variable called EXINIT for these options (though you can also type
:set option while in vi). For example, to have vi move the cursor to a bracket’s pair for a second
when you type a bracket, you can type “:set showmatch” in vi, or “EXINIT=’set
showmatch’; export EXINIT ” in your .profile (executed when you log in).

UNIX System Administration

Rudolf Cardinal, August 1995 12

Miscellaneous

^G File statistics, including how many lines there are and what line you’re at.
^L Clears and redraws screen.
^R Redraws the screen, eliminating logical lines not corresponding to physical lines (lines

with only an @ on them).
. Repeats the last command that changed the buffer (the text)
ZZ Saves and exits.

Commands preceded by a colon (ed commands)
The other sort of commands in vi are those preceded by a colon (:). When you type a colon, the
cursor hops to the bottom line where you can type in commands. Press enter to execute the command.

:w Write the file
:q Quit. If the file has changed, it won’t let you.
:q! Quit, even if the file has changed (losing the changes).
:wq Writes, then quits.
:x Write (if necessary), then quit (same as ZZ).
:e file Edit file file (losing changes)
:e! Reedit, discarding changes
:e + file Edit, starting at end
:e + n Edit, starting at line n
:w name Write file name
:w! name Overwrite file name
:x,yw
file

Writes lines x through y to file

:r name Read file name into buffer
:r !cmd Read output of cmd into buffer
:n Edit next file in argument list
:n! Edit next file, discarding changes
:n args Specify new argument list
:ta tag Edit file containing tag tag, at tag
:shell Fires up a shell. Press ^D to return to vi.

UNIX System Administration

Rudolf Cardinal, August 1995 13

Booting a UNIX machine
This depends for the most part upon the hardware. Turn on your UNIX box and after testing itself it
will give you a console prompt (>> on the DEC machines).

The machine knows about the devices (SCSI, Ethernet, etc.) attached to it, because it just asked them
what they were. If you want to know too, you have to ask the machine: on the DECs this is a
command such as conf (DECsystem 5100) or test -c (DECstation 3100). If in doubt, type ?.

The objective is to load a file called vmunix from one of those devices. Normally, the machine will
have been set up with an environment variable in its CMOS RAM. So… try boot or auto.

Failing that, you have to specify which device to boot from, as you do when you install UNIX. This
command varies between machines, but you must specify SCSI controller number, SCSI device ID
and device type. On a DECstation 3100, to boot from SCSI tape (tz) with SCSI ID #5 on controller #0,
you type boot -f tz(0,5). Check with the machine manual, or better, the UNIX installation
guide.

Stopping a UNIX machine
There are many ways to do this:

shutdown -h now Shuts down now, halts and returns to the machine’s console prompt.
shutdown -r now Shuts down now and reboots.
reboot Same as the above.

You can also use shutdown to specify a time for shutdown, but this is of limited use.

Flushing the cache
If you ever have to turn off a system running UNIX, it is essential to flush the cache.
UNIX uses write-behind caching: you might think you wrote a file to disk, but chances are it’s still in
RAM. Until we get laser-addressed non-volatile protein memory – you heard it here first, courtesy of
Scientific American – this means switching off the power makes a mess of UNIX.

Type sync. Wait.
When the prompt returns, assuming no other processes (i.e. users) write to disk, you can switch off in
relative safety.

Broadcasting messages to people
If you want to shut down and there are people on the system, it is courteous to tell them.

wall Short for “write all”. You need to be root (superuser). Type in your
message, press ^D to finish (or ̂ C to abort).

write user The same, but to a particular user.
cat > /dev/ttyxx The rude and amusing way to do it. If you know what terminal they’re

logged on at (see Managing Processes and Snooping below), and you are
superuser, you can write directly to their terminal. That way you don’t get
the beep and the message saying “Message from …”. It can really confuse
people :-)

Which machine am I on?
Type hostname. If it’s not what you expect, don’t shut it down!

UNIX System Administration

Rudolf Cardinal, August 1995 14

How UNIX starts
1. /vmunix loads. The operating system itself. This runs…
2. /bin/init. If the reboot ‘fails’ or multi-user mode is not set up, init leaves the system in

single-user mode (talking to the console, with superuser privileges). If the reboot succeeds (or
when the superuser presses ^D in single-user mode), init begins multiuser operation and runs…

3. The shell script /etc/rc executes. This brings up the file systems (running fsck, file-system
check, to ensure their integrity) and performs other somewhat essential tasks (bringing up system
daemons). As part of its execution, it runs…

4. The shell script /etc/rc.local executes. This contains machine-dependent stuff, like the
machine’s name: “commands pertinent only to a specific site”, according to the manual. The
“.local” suffix indicates the idea behind this: rc contains stuff that any UNIX system will
need; rc.local contains stuff specific to this system.

UNIX security; users, groups and ownership
Everything in UNIX, be it memory, a tape drive or a directory, is owned. This is to prevent processes
from reading from or writing to things they shouldn’t. We needn’t be overly concerned with process
ownership here. File ownership is covered under File systems.

The superuser, root
This user has read rights to everything and the ability to change the owner and mode (flags) of
anything.

The su command
su stands for “substitute user ID”. The syntax is

su [– | -f] [username]

If username is omitted, ‘root’ is assumed, and after a correct password is entered a # prompt is
substituted for the $ “to remind the superuser of his responsibilities”. If you were superuser to begin
with, you need enter no password.

Normally, su changes no part of the user environment except the variables HOME and SHELL. If you
use “su – username”, a full login is simulated (so all environment varibles will be set). The –f
parameter prevents csh (the C shell) from executing .cshrc , making su start faster. It isn’t
relevant in a system using sh.

Since the shell (see Shells and Shell Scripts) can take the parameter -c filename to read commands
from filename, you can issue the command

su – user -c shellscript

to run shellscript as user. This form of the command is very useful in scripts run automatically by
cron (see Cron).

UNIX System Administration

Rudolf Cardinal, August 1995 15

The UNIX file system

Filenames and Wildcards
• UNIX filenames are longer than you need them to be. They cannot contain some characters (?, <,

>, $, that sort of thing). They can contain dots (.) but they don’t have file types or extensions like
DOS. They can contain more than one dot, too (e.g. tree.c.backup).

• A file whose name begins with a dot is invisible on a normal ls display (ls -a shows all files).
• A ? is a wildcard for any single character. * is a wildcard for any (null or greater) group of

characters.

File ownership; output of ls -al
All files are owned by one user (and one group). When you type ls -al, a username appears by each
file; this is the owner. Let us analyse the output from this command and see how ownership is
relevant.

Flags Links Owner Size Date/time Name
drwxr-x--x 3 rudolf 512 Jun 30 15:26 .
drwxr-xr-x 20 root 512 Jun 30 15:26 ..
-rwxr-x--x 1 rudolf 261 Jun 30 10:03 .cshrc
-rwxr-x--x 1 rudolf 234 Jun 30 10:03 .login
-rwxr-x--x 1 rudolf 143 Jun 30 10:04 .profile
-rwxr-xr-x 1 rudolf 38180 Jun 30 09:42 a.out
drwxr-x--x 2 rudolf 512 Jun 30 10:03 bin
drwxr-x--x 1 rudolf 53428 Jun 30 10:03 core
-rwxrwxrwx 1 rudolf 17 Jun 30 13:14 tree
-rw-r--r-- 1 rudolf 3335 Jun 30 13:46 tree.c

Flags: First, d for directory. Then, three groups of r,w,x: these stand for read, write and execute
permission. The first group is for the owner, the second for the group the owner is in, and the third for
everyone else: “user”, “group” and “world” in UNIX slang. So, to take an example: tree.c is owned
by rudolf, who can read it and write to it, but not execute it (it’s not a program). Other members of
rudolf’s group can only read it, as can the rest of the world.

Links: Number of hard links to the file. See Links below.

Owner: The name (or number if UNIX can’t look up the name) of the user who owns the file. The
owner can change the flags for the file (see below).

Size, date, time: fairly obvious. The size is in bytes.

Name: the filename (see Filenames and Wildcards)

Changing the mode (flags) of a file
This is the task of chmod. A nasty command to learn, it requires some thought.

chmod [-R] mode file

The complicated bit is mode, which can be specified in two ways.

1. As an absolute octal value. I think this is the easiest. Here, mode is a three-digit octal number
(digits 0-7). The first digit represents user; the second group; the third world. Each digit is
made up as follows: take 4 for read, 2 for write, 1 for execute. Add them up.

So, for example, let us say I have a file called tree.c, and I want to set the flags as rwxr-
xr--. Digit one is 4+2+1; digit two is 4+0+1; digit three is 4+0+0. My number is 754. I issue

UNIX System Administration

Rudolf Cardinal, August 1995 16

the command chmod 754 tree.c.

Extra-complicated bit. If you specify a four-digit octal number, the extra digit in front is
composed of the following bits:

4 Set user ID on execution (applies only to executables)

2 Set group ID on execution (applies only to executables)

1 Set sticky bit. Only the superuser can do this. If the sticky bit is set on an
executable, nd the file is set up for sharing (the default), the system will
not abandon the swap-space image of the program-text (non-data) part of
the file when its last user terminates. (This means the file cannot be
written or deleted, though directory entries can be removed if one link
remains). To replace a sticky file, clear the sticky bit and execute the
program to flush the swapped copy. Write the file (impossible if others
are using it). If the sticky bit is set on a directory, an unprivileged user
cannot delete or rename files of other users in that directory. This is
useful for directories such as /tmp that must be publicly writable but
which should deny users the possibility of arbitrarily deleting or
renaming each others’ files.

The set-UID and set-GID bits give the process created by running an executable the user/group
ID of the owning user/group (typically so it may access privileged data). Note also that the set-
UID and set-GID bits are automatically turned off when a file is written or its owner changed,
for obvious security reasons.

2. In a symbolic fashion. Here, mode is

[who] op permission [op permission] …

without spaces. who is u (“user”, the owner), g (group) or o (others) or a combination of the
three. The letter a (all) can be used instead of “ugo”. op is + to assign permission, – to revoke
permission or = to assign permission in an absolute fashion. permission is any combination of
r (read), w (write), x (execute), s (set owner or group ID – can only be assigned to u or g) and
t (“save text”, i.e. sticky). Alternatively, you can use u, g or o as a permission, to set the
permission for who to be the same as that for u/g/o.

Some examples will help.

chmod g+x filea Gives group execute permission.
chmod g=x fileb Gives group only execute permission.
chmod g=u filea Gives the group the same permissions as currently

exist for user.
chmod o= fileb Revokes all permissions for others.
chmod u+w,g=u filea Gives write permission to user, then assigns all

current permissions for user to group.

The –R flag recursively descends the directory heirarchy – often useful. (However, chmod does
not change the mode of any symbolic links it encounters, and does not traverse the path
associated with the link.)

Changing the ownership of a file
chown [-R] username/number[.groupname/number] filename
chgrp [-R] group file

UNIX System Administration

Rudolf Cardinal, August 1995 17

These commands are easy. For example:

chown rudolf tree.c
chown root /etc/oodle
chown n-thorpe.oracle random.file

Only the superuser can change the ownership of a file; users can change the group of a file they own
to another group to which they belong. However, /etc/chown isn’t usually on users’ paths;
discourage casual use. In both chown and chgrp, the –R flag recurses subdirectories.

Drives – concept, mounting and dismounting
At the lowest level, a drive is a SCSI device. At the next level in the heirarchy, UNIX sees it as a
device (whose file is kept in /dev!) that UNIX can talk to with chunks of data called blocks. This is
distinct from other devices – “character” devices – that are talked to one byte at a time. There is a
system by which UNIX maps the special files kept in /dev to the hardware (see Devices). These
devices have data on them that are organised in a structure that UNIX recognises as a file system. The
boot procedure gets the root (/) file system up and running, together with the swap space. It then
mounts all the partitions.

A disk is mounted under the root file system by mapping it to a directory that is otherwise empty. The
syntax is

/etc/mount [device] [directory]

and the drive is dismounted using

/etc/umount [device] [directory]

You can omit either device or directory and then the system looks up the missing data in
/etc/fstab (file-system table). If you issue the command mount -a, mount looks up all the
devices in /etc/fstab and tries to mount them all. The boot procedure does this.

An example might help. Let’s say you have a disk drive which corresponds to device rz1c (SCSI bus
0, device 1, partition c which is the whole disk) that you want to mount in your empty directory
/programs. You say

/etc/mount /dev/rz1c /programs

Here is the full syntax of the mount command as it applies to UFS (local file systems). For details of
NFS-specific options, see NFS under Networking.

/etc/mount [options] [device] [directory]

Options:

(none) Without arguments, mount prints the list of mounted file systems.
-a Reads /etc/fstab and mounts (or unmounts) all file systems listed there.
-f Fast unmount (NFS only).
-o options Passes options to the specific file system’s mount routine in the kernel. Not

for everyday use.
-r Mount read-only. To share a disk, each host must mount it read-only.
-t type Specifies the type of file system being mounted. When used with -a, all file

systems of that type that are in /etc/fstab are mounted.
-v Verbose.

UNIX System Administration

Rudolf Cardinal, August 1995 18

The umount command has the syntax:

/etc/umount [options] [device] [directory]

Options:

-a Unmounts all mounted file systems. It may be necessary to run this twice.
-v Verbose.

Note:

1. Mounting corrupted file systems will crash the system – run fsck first!
2. If the directory on which a file system is to be mounted is a symbolic link, the file system is

mounted on top of the directory to which the link refers, not the link itself.

/etc/fstab

What exactly is the format of fstab? Here’s one I found lying around.

/dev/rz0a:/:rw:1:!:ufs::
/dev/rz1c:/usr:rw:1:2:ufs::
/dev/rz3a:/var:rw:1:4:ufs::
/dev/rz3g:/usr/users:rw:1:6:ufs::
/dev/rz6g:/database:rw:1:8:ufs::
/dev/rz6a:/tmp:rw:1:3:ufs::
/usr/users@pythagoras:/pythagoras_users:ro:0:0:nfs:soft,bg,nosuid

The fields are as follows:

1. Name of the block special device on which the file system resides. It can also be a
network name for NFS (the network file system), such as /@discovery.

2. The pathname of the directory on which the file system is to be mounted.
3. How the file system is mounted:

rw – read/write
ro – read only
rq – read/write with quotas
sw – make the special file part of the swap space
xx – ignore the entry

4. The frequency (in days) with which the dump command dumps the rw, ro and rq file
systems.

5. The order in which the fsck command checks the rw, ro and rq file systems at reboot
time.

6. The name of the file system type.
ufs – ULTRIX file system
nfs – SUN Network File System

7. Options: an arbitrary string that applies to that particular file system. In the NFS entry
above, NFS-specific options are listed.

What’s CHKDSK in UNIX?
fsck(8). With no options, it checks all file systems in /etc/fstab. This is an important part of the
boot procedure (fsck is invoked from /etc/rc) as mounting corrupted file systems will crash the
system.

Links
A link is a directory entry referring to a file. A file, together with its size and all its protection
information, may have several links to it. There are two types of link: hard and symbolic.

UNIX System Administration

Rudolf Cardinal, August 1995 19

A hard link to a file is indistinguishable from the file itself, and must be on the same file system (i.e.
same physical device) as the original file. Hard links cannot refer to directories. There is always at
least one hard link to every file: this is its directory entry. (This implies that files are distinct from
their directory entries, yet referenced by them, and this is exactly the case. UNIX deletes file by
unlinking their entries.) If you create a new hard link, you get another directory entry (somewhere,
under some name) for the same file. If you modify a file via one of its hard links, it is modified as
referenced by any other. Clear? It’s the same file.

A symbolic link is much the same, except it can span file systems and refer to directories.
Furthermore, it can have a mode (see “Changing the mode of a file”) different from that of the file to
which it is linked. Symlinks are useful mainly as references to directories; for example, the directory
/sys is a symlink (at least on the machines I’m using) to /usr/sys. If you type cd /sys followed
by pwd (print working directory) you will see /usr/sys.

Creating links. Use the command

ln [-f] [-i] [-s] filename linkname

Options:

-f Forces overwrite of any files that exist.
-i Interactive: prompts if any files already exist.
-s Symlink: make the link symbolic.

If linkname is omitted, the link has the same name as filename. The current directory is assumed, but
linkname can also be a directory to put the link in. Fairly obvious when you use it.

Detecting links. If you execute the command ls -al, you get information that can help. If the first
letter of the flags (the first column, looking like lrwxr-xr-x) is an l, the entry is a symlink. The
last column gives the name of the symlink and what it is linked to (e.g. sys -> usr/sys). Hard
links, of course, are indistinguishable from other files! However, the second column gives the number
of hard links to a file. If this is more than 1, there’s another hard link somewhere! A utility like Tree
(plug, plug) will allow you to find it, though not with ease: the hard links have the same i-node and
device numbers.

NFS – beware
I’d like to warn you about NFS. It’s very useful, but think twice before mounting any network drive
read-write, as opposed to read-only. Something nasty nearly happened to us: the machine hubble (a
‘test’ machine) NFS-mounted a database drive from discovery (a live system) in order to copy
some data over. It turned out that hubble was running its database from discovery’s drive: had
anyone chosen to wipe the ‘test’ database, we’d have had problems.

UNIX System Administration

Rudolf Cardinal, August 1995 20

A little look at system files and directories
Here’s a quick summary of a default UNIX installation.

Directory What’s in it
/ • Boot file (ultrixboot in our case)

• Kernel (vmunix)
• Files used at root’s login (.cshrc, .login, .profile)

/bin • Programs that are absolutely part of the core of UNIX (cp, rm, mv, sh, ls,
mount, shutdown…)

/dev • Device special files.
• The MAKEDEV device-special-file-making script

/etc • Programs that aren’t quite so central to UNIX (adduser, chown, lpc,
ping…). These are management tools: ordinary users don’t have /etc on
their path.

• Many configuration files (rc, rc.local, fstab, crontab, disktab,
inetd.conf, hosts…)

/lost+found • There’s one of these directories at the top of every file system (so there’s
always /lost+found, and often /usr/lost+found,
/var/lost+found…). The fsck program saves the UNIX equivalent
of “lost clusters” under DOS (i.e. files that are allocated but unreferenced)
into this directory.

/tmp • Temporary storage space
/usr • Nothing by itself; /usr contains lots of other administrative programs and

files, and often everything else that happens on the system. A few
important subdirectories are listed below.

/usr/bin • ‘User’ programs (such as nice, passwd, sort, touch)
/usr/dict • Dictionary
/usr/diskless • Files for diskless workstations
/usr/etc • In the same vein as /etc
/usr/examples • Programming examples
/usr/include • Header files for C
/usr/man • Manual pages
/usr/skel • Default files for new users: .cshrc, .login, .profile and

others for XWindows &c.
/usr/sys • System header files (./h), configuration scripts for making new

kernels (./conf)… all sorts of stuff you hope you never need but
probably will.

/usr/ucb • Programs by the University of California, Berkeley. Things like
vi, man, whoami, tail…

/usr/users • Users’ home directories
/var • All sorts of relatively unimportant administrative stuff, including printer

spooling (/var/spool), XWindows (/var/X11), UUCP
(/var/uucp), system logs (/var/adm)

UNIX System Administration

Rudolf Cardinal, August 1995 21

Managing user accounts

Adding users
Run /etc/adduser by typing adduser. You are asked for a username, user ID (use the default
supplied!), full name, the login group (usually “users”, although you can make a new group at this
point) and any other groups you want the user to be a member of, the location of the home directory,
the default shell and a password. adduser sets up a home directory and copies default .cshrc,
.login and .profile files into it from /usr/skel. The username can contain only lower case
ASCII characters (‘a’ – ‘z’) and digits (0 – 9).

Deleting users
Run /etc/removeuser by typing removeuser. You are asked for the name of the user you wish
to remove, and whether you wish to destroy the home directory. Make sure there’s nothing you want
in there first!

Adding groups
Run /etc/addgroup by typing addgroup. You are asked for the group’s name and number.

Removing groups
Edit /etc/group manually!

Changing passwords
Run /bin/passwd by typing passwd [–afs] [name]. If no name is supplied, passwd
operates on your user (if you have su’d, the user you now appear to be). With no other options,
passwd asks you for an old password (unless you are root) and a new one.

Options:
-a Supply a list of system-generated passwords. Use this if you want real security
-f Change the finger information (real name, phone number etc.), not the

password. This is equivalent to the chfn command.
-s Change the login shell, not the password.

Security note: anyone who uses an English word or a name connected to them doesn’t care about real
security or doesn’t understand it. The best passwords are random, like bx23H5sj – remember UNIX
is case-sensitive. The next best are system-generated; the system generates pseudo-words that are a
little easier to remember, such as kuboit. Other good passwords are mis-spelled words, such as
oppised. Words in a dictionary are vulnerable to a dictionary search, and this is a trivial problem
for any modern personal computer.

The /etc/passwd file
Use vipw to edit /etc/passwd, not “vi /etc/passwd”. You get the benefit of better locking,
database synchronisation and a check that you haven’t trashed the root user before it saves.

This file is an ASCII file that contains the following information for each user:

Login name
Encrypted password
User ID
(Primary) Group ID
Real name, office, extension, home phone
Initial working directory
Login shell

UNIX System Administration

Rudolf Cardinal, August 1995 22

Fields are separated by a colon; entries are separated by a new line. If the password field is blank, no
password is asked for. If the password field is “Nologin” or “PASSWORD HERE”, that user won’t
be able to log in. If the shell field is blank, /bin/sh is used. The “real name” field can contain an
ampersand (&) to stand for the login name; the name and telephone numbers, if present, are separated
by commas. Example entries:

root:UnoHkGYv74KO.:0:1:System PRIVILEGED Accounts,,,:/:/bin/sh
accounts:1ZuMQiDIiEEA:272:15:Accounts User:/usr/users/accounts:

The /etc/passwd file can be read by all users. This is superficially secure as the passwords are
encrypted by a one-way encryption system, and a reasonable one at that. Part of the security of the
algorithm stemmed from the difficulty of obtaining it. This applies less today: programs are readily
available which will encrypt every word of a dictionary and compare the encrypted version to an entry
in /etc/passwd. Some details of the encryption system are listed in the manual under crypt(3)
(see Getting Help…), for those that are interested. Since /etc/passwd is obtainable by any user
with the most rudimentary file access (certainly any with shell access), most UNIX systems in the
academic and corporate sectors are vulnerable to dictionary check hacking. Choose secure passwords!

The /etc/group file
This is also accessible to all users, but that’s not a problem (except to find out which accounts are
worth breaking into). It contains entries with the following fields:

Group name
Encrypted password
Group ID number
Comma-separated list of all users allowed in the group

No more than 200 users are allowed in any group. Also, no more than 1820 characters are allowed on
one line of the file. Don’t put a user in more than 8 groups: it causes problems with NFS-mounting
from old versions of UNIX. If the password field is null, no password is demanded.

Getting information
Type id to find out who you are and your primary group. If you have su’d, you get information about
the user you appear to be. Type groups to find out which groups you are a member of.

Advanced security
Run /usr/etc/sec/secsetup to change your system’s security level. This may involve
rebuilding the kernel. You can enable security auditing, trusted path and enhanced login in any
combination. See secsetup(8) for details. It modifies the mandatory configuration file
/etc/svc.conf, which you can also edit yourself, but bear in mind that secsetup knows when
to modify the kernel and you probably don’t. The /etc/svc.conf file does contain password
lengths and expiration time; I guess that modifying these variables takes effect at the next reboot
without needing to rebuild the kernel.

With UPGRADE-level password security, if the password entry in /etc/passwd is “*”, the
password stored in the auth database is used instead. With ENHANCED-level security, the password
field in /etc/passwd is always ignored. The auth database can only be read by the superuser,
alleviating most of the vulnerability of /etc/passwd.

The auth database contains a user-ID key, then the password, the time the password was last
modified, the minimum password lifetime, the maximum password lifetime, the account mask
(account enabled? can the user change his/her password? is the user allowed to make up a password
him/herself?), login failure count, audit ID, audit control and audit mask. See auth(5) for details.

UNIX System Administration

Rudolf Cardinal, August 1995 23

You may edit a user’s auth entry using /usr/etc/sec/edauth username. However, the editor
used is ed, which must vie (pun intended) for the title of “Most Unfriendly Editor Ever”. I don’t
expect you to need this command.

Login banners
You can edit /etc/gettytab to add a banner message.
The banner message is the im field in the default entry. Normally it gives the UNIX version. Edit
it, then kill -HUP 1. Note that rc.local (ours, at least) tries to put the version number back in
whenever UNIX boots, by searching for “ULTRIX” – if it’s not there, the file might come to grief. I
suggest that your banner should go on a different line to the UNIX version message, or on the same
line but before the version message. Alternatively, edit rc.local!

Message of the day
The file /etc/motd is displayed immediately after a successful login. This is the normal place to put
announcements and instructions.

Trusted path
This is a security system designed to assure a user that the login prompt is genuine and not a Trojan
horse trying to capture passwords. If trusted path is running (configured by the script
/usr/etc/sec/secsetup), pressing the BREAK key followed by RETURN causes the trusted
path system to kill all processes on that terminal and return to the login prompt.

Trusted path is not supported for pseudo-terminals. You may need to reconfigure your terminal
server’s “attention” key to something other than BREAK.

Disabling login
If the file /etc/nologin exists, no account other than root can log in. The file is displayed to
those who try.

UNIX System Administration

Rudolf Cardinal, August 1995 24

Managing processes. Snooping and killing errant tasks.

First, some theory.

What is a process?
A process, or task, is a program. Whereas DOS runs only one program at any time, UNIX is a multi-
tasking operating system and runs many. A special program called the scheduler divides the
processor’s time between processes – “time-slicing” – so they appear to run simultaneously. This is
the whole point of UNIX.

So what’s to prevent my process from spying on your process’s memory, or writing random
information to it, or suddenly redirecting your highly confidential information to my screen? UNIX
prevents any process from reading or writing another process’s memory directly. Indeed, the most
common programming error is to read or write to a “floating pointer”; when such a violation occurs,
UNIX will return an error, and unless the program traps that error signal it will crash and “dump
core” – write the state of the process to a file called core that in theory can be used for debugging.
Inter-process communication is handles through signals, pipes and sockets.

Signals
If you want a process to do something, you can’t write to its memory; you must sent it a signal. UNIX
has a set of valid signals that processes may send to each other (“hang up”, “interrupt”, “quit”, “kill”,
“illegal instruction”, “user signal”...) Programs can arrange for parts of themselved to be called when
their process receives a certain signal. Some signals cannot be trapped in this way, notably “kill”.

Pipes
Signals enable processes to transfer simple information. For data transfer, a more complex method is
needed: the pipe. A pipe is a “channel” between two processes. A process allocates two file descriptors
for this purpose, then forks (see Forking below). The two child processes thus created can read using
one file descriptor and write to the other, and cooperating in this manner can transfer data.

You probably use pipes under DOS and UNIX all the time. They’re the means by which output from
one command can be turned into input to another. When you type ls -al | more, the shell
creates a pipe, then forks (see Forking below). One of the child processes runs “ls -al” after
making the standard output channel (stdout) a copy of the pipe’s write channel. The other runs
“more” after making the standard input channel (stdin) a copy of the pipe’s read channel. The
result is a transfer of data directly from one process to another.

Sockets
Sockets are like pipes, but the information is carried in a different way. If you want your process in
Kent to talk to another in Dallas, pipes won’t do. A socket can provide reliable two-way
communication between processes on the same machine, or between processes anywhere on the
planet. If you’re an Windows Internet user, you might have heard of WINSOCK: this is a program
that provides sockets to programs and connects these sockets to the TCP/IP communications protocol
for transfer around the world. Sockets come in four types:

Socket type Purpose
SOCK_STREAM sequenced, reliable, 2-way communication byte stream with a

mechanism for out-of-band transmission
SOCK_DGRAM datagrams (connectionless, unreliable messages of a fixed

maximum length, typically small)
SOCK_RAW provide access to internal network interfaces (superuser only)
SOCK_SEQPACKET for DECnet communications; ignore

UNIX System Administration

Rudolf Cardinal, August 1995 25

Forking
I’ve mentioned forking a couple of times now without explaining it. It’s fun and central to UNIX.
Each process has a reference number, a process ID. There is a function called fork(), and when a
process calls this UNIX makes another copy of the process. This copy is called a child; the original is
now a parent. The child is an exact copy of the parent, aside from having a different process ID and
parent process ID (the process ID of the parent). The fork() call returns 0 to the child and 1 to the
parent, so they can distinguish themselves.

You may think this rather erudite, but it happens all the time. Consider the shell: this must run
programs. It runs programs as separate processes and must not itself be destroyed in the process (no
pun intended). There is no low-level command in UNIX to start a separate process like this. Odd, you
might think, but how would you implement the system? What the shell does is this. First, it forks. The
child process transforms itself into the program to be executed (destroying itself in the… process),
using the execve() function. The parent process then waits, using the wait() function, for its
child to terminate. Of course, there are functions to do just this, such as system(), but it’s
informative to know what’s happening “under the bonnet”.

The practical benefit of this system is that you have the option of not waiting for the child to
terminate. If you append an ampersand (&) to a command, the shell reports its child’s process ID (in
case you want to kill it, or whatever) and returns immediately. The output from the background
process still goes to your terminal, unless you redirect it, but (obviously) there is no input (“the default
standard input for the command is the empty file /dev/null”) unless you direct some to it from a
file. The wait command can be used to wait for all child processes to terminate.

How to crash UNIX
Do not try this on a system that someone cares about! Make sure all data is saved and synced
beforehand. Compile and run this C program, and your system will crash:

main()
{
 while (1) fork();
}

This code does nothing but fork. Each fork() makes two copies of the process, each of which
forks... the system becomes unresponsive within seconds (if you’re using a workstation, you’ll notice
that the mouse is fine, because it runs on hardware interrupts, but the CapsLock light responds about
two minutes after you press the key). You’ll have to turn it off – killing the process won’t work.
Although killing a process kills its children too, UNIX is time-slicing: while the system is removing
processes from the “top”, at the “bottom”, processes are being created.

The alarming thing about this code is that any user has the authority to crash the system. UNIX never
forbids a process to fork on that basis of who owns it, only on the basis of having run out of process
space (which is what happens when you run this code – only it doesn’t care, it keeps trying). If you
give users access to a command line, they can crash the system. Consequently, this is information to
be carefully controlled. I justify its inclusion in this guide because you, the readers, are administrators
and should be aware of the danger, and because if you want to try it you can find a spare machine. If
you tell a user without the responsibility of running a system, you risk your data.

Swapping out
UNIX implements virtual memory properly. If it hasn’t got any RAM free to give a process, it takes
another process and writes its image (the “pseudo-computer” that the process it, including memory,
CPU register values, open files, current directory and so on) to an area of the file system known as
swap space, freeing up the RAM in the process. When the process that is swapped out needs to run,
UNIX shuffles its memory around and gets the process back from disk.

UNIX System Administration

Rudolf Cardinal, August 1995 26

UNIX says it needs a swap space about three times the RAM size. This means we waste 600Mb of
disk space on our main system alone. Heigh ho. For details on managing swap space, see
/etc/fstab under The UNIX File System.

Finding out about processes
On a practical level, administrators often have to kill crashed or otherwise errant processes. To send a
signal to a process, you need to know its process ID. Let’s look at ways of finding this out.

w – what are people doing?
Here’s a sample result of the w command:

 10:49am up 21:22, 2 users, load average: 1.80, 1.54, 1.01
User tty from login@ idle JCPU PCPU what
oracle co Thu 1pm 20:31 14:03 7:31 orapopskc 272 273 10
root p0 1.5.0.99 8:34am 46 1 w

The first line is also what you get from the uptime command. It’s 10:49; the system has been up for
21 hours. There are two users on, and there have been 1.80, 1.54 and 1.01 jobs in the run queue on
average for the last 1, 5 and 15-minute periods respectively. This is an indication of how busy the
system is.

Then come the users. oracle has been logged into the console (co, file /dev/console) since
Thursday afternoon. No characters have been typed into that terminal for 20 hours. The JCPU field
indicates the CPU time used by all processes and their children on that terminal. It might be
hours:minutes; then again, it might be minutes:seconds. Probably the latter. PCPU is the CPU time
used by the currently active process. “what” is the name and arguments of the current process. Note
that w takes an educated guess as to which process is the “current” one. Don’t rely on it entirely; use
ps as well. Nonetheless, w is a very useful summary of what’s happening on the system. You can also
use “w user” to restrict the information to one user.

ps – process status
This is the command to get detailed information.
Simplified syntax:

ps [options]

Useful options: (note that these are quite specific to the UNIX version)

-# Gives information about process number #. (This must be the last option given and
cannot be used with –a or –t .)

-a Displays information for processes executed from all users’ terminals, not just from
your terminal. (Cannot be used with –# or –t .)

-c Displays the command names as stored internally in the system for accounting, not
the command arguments which are kept in the process addresss space. This is less
informative but more reliable as a process can destroy information in its address
space.

-e Displays the environment as well as the command arguments
-g Displays all processes within the process group, not just process group leaders. This

will show you the boring things like top-level command interpreters and processes
waiting for users to log in.

-l Displays information in long format, including the fields PPID (parent process ID)
-t x Displays information for terminal x only. (x is co for the console, ? for processes

with no terminal, blank for the current terminal, p3 for ttyp3 etc.)
-u User-oriented output, including the fields USER, %CPU and %MEM.
-w Produces 132-column output.
-ww Produces arbitrarily wide output.

UNIX System Administration

Rudolf Cardinal, August 1995 27

-x Displays information for all processes, including those not executed from
terminals.

Output fields:

PID Process ID number
TT Control terminal
TIME User + system time
STAT State of the process, given as a sequence of five letters (e.g. RWNAV).

First letter: run status
R – running
T – stopped
P – in page wait
D – in disk (or other short-term) wait
S – sleeping for less than about 20s.
I – idle (sleeping for longer than about 20s)

Second letter: swapped out?
W – swapped out
Z – killed, but not yet removed (“zombie”)
 – process is in core (RAM)
> – process has a specified soft limit on memory and is exceeding

it. (Not swapped.)

Third letter: altered CPU priority? (See Be nice)
N – priority reduced
< – priority artificially raised
 – no special treatment

Fourth letter – special virtual memory state?
A – never mind
S – never mind
 – normal

Fifth letter – vector process?
V – process using vector hardware. VAX only.
 – not using vector hardware

USER Names the process’ owner.
%CPU CPU usage. Not very accurate.
NICE (NI) The process scheduling increment (see Be nice).
SIZE (SZ) Virtual size of the process in 1024-byte units.
RSS Real memory (“resident set”) size of the process in 1024-byte units.
LIM Soft limit on memory used or “xx” if none.
TSIZ Size of the text (shared program) image.
TRS Size of the resident (real memory) set of text.
%MEM Percentage of real memory used by the process.
RE Residency time (seconds in core).
SL Sleep time (seconds blocked)
PAGEIN Number of disk I/O operations by the process that referred to pages not in

core.
UID User ID.
PPID Parent process ID.
CP Short-term CPU use factor, used in scheduling.
PRI Process priority. (Negative if the process is in a wait state that cannot be

interrupted.)

UNIX System Administration

Rudolf Cardinal, August 1995 28

ADDR Swap address of the process or page frame of the beginning of the user
page table entries.

WCHAN The event the process is waiting for (an address in the system with the
initial part of the address truncated).

F Flags. See ps(1). Useful for debugging only.

A process that has a parent and has exited, but for which the parent has not waited, is marked
<defunct>. A process that is blocked trying to exit is marked <exiting>.

Processes can get into a state where they are called an orphan. I can’t find this in the manual (because
the index is wrong), but I assume it’s when a process’s parent has been killed. Normally, of course,
killing a process kills its children.

Common commands for administrators to use are “ps -aux” and “ ps -auxww”. Remember
you can pipe it to grep rather than remember all the options for ps.

Sending signals to processes; how to kill processes
To send a signal to a process, use the kill command. Syntax:

kill [-sig] processid…
or kill -l

Note that you need to know the process ID number (use the ps command, above). Without any sig
option, kill sends the TERM (terminate) signal to the process(es). If you put in a –sig argument, that
signal is sent instead. kill -l lists the valid signals.

The default signal, TERM, is a gentle one: “please go away”. Processes can ignore it. If a process
won’t die, use “kill –9 processid”. This unceremoniously kicks it out. Signal 9 can also be
referred to as KILL.

To kill a process, it must belong to you or you must be superuser. Please note that anyone can kill
their own processes! The less time you spend as superuser, the smaller your chances of doing
something wrong.

Be nice
If you execute a command as

nice [-number] command [arguments]

its priority is altered. Positive numbers lower the priority and negative numbers raise it (superuser
only). The range is –20 to +20. Default is +10. If you wish to change the priority of a process that is
already running, use:

/etc/renice priority [[-p] processID] [[-g] processgroup] [[-u] user]

Normally, the number you give is interpreted as a process ID; using -p, -g or -u forces renice to
interpret the number as a process ID, process group ID or user ID respectively. This feature enables
you to change the priority of all process belonging to a user (or process group) at once.

Two points:
1. If you make a process’ priority very negative, it cannot be interrupted. To regain control

you may have to make it greater than zero again.
2. Non-superusers cannot increase the scheduling priority of their own processes, even if

they were the ones that originally decreased it. Heh, heh.

UNIX System Administration

Rudolf Cardinal, August 1995 29

Monitor thyself for evil
Not part of UNIX, the monitor command gives you an interactive view of your system. If it’s on
your system, it should be in /usr/bin.

Keys. Within monitor, press h or ? for help. Press m to “magnify” any field. You are presented
with a list of options; j and k move the cursor up and down, s selects a field. Press u (“unmagnify”)
to return to the main screen. Press q to quit.

Notes. Page faults aren’t anything nasty – a page fault occurs when a process asks for memory that’s
swapped out.

Other status commands
uptime display system status
cpustat report CPU statistics
iostat report I/O statistics
lpstat printer status information (see Printing)
netstat show network status (see Networking)
pstat print system facts

This reports on the internal system tables and can give very detailed
information. See pstat(8) for details.

ipcs report interprocess communication facilities status
vmstat report virtual memory statistics
df display free and used disk space (see Devices / Disks)

UNIX System Administration

Rudolf Cardinal, August 1995 30

Devices

UNIX aims to make hardware device access as transparent as possible, by presenting a uniform
device-independent layer to programs and by enclosing all device-specific code in the operating
system kernel itself. To this end, each supported I/O device is associated with at least on “special” file.
Special files are read and written just like ordinary files, but requests to read and write activate the
associated device. An entry for each special file resides in the /dev directory (though links can be
elsewhere). These special files are protected from indiscriminate access, though few protections apply
to the superuser, who must be wary. Device special files can be of block or character type, depending
on whether they support the transfer of blocks of data; thus disks are block devices and terminals are
character devices.

The “file filespec” command can be used to examine a device special file. This command
examines files and tells you what type of file they are. It recognises executables, directories, links,
empty files, C files, ASCII files and many other types… and also devices. Here it is exceptionally
useful, as it gives details of device types, SCSI IDs, tape device status (offline? write-locked?) and so
on.

Making devices
Device special files are usually created with the /dev/MAKEDEV script. The syntax is

/dev/MAKEDEV devicename?

where devicename is a supported device and ? is a logical unit number. For example, the devicename
of a SCSI disk is rz and the LUN is its SCSI ID plus eight times its SCSI controller number, so to
make a set of device special files for a SCSI disk on controller 0, SCSI ID 5 you would type
/dev/MAKEDEV rz5. You may look up devicenames by examining /dev/MAKEDEV itself.

MAKEDEV calls /etc/mknod to make the device special file, having determined whether the device
is block-type or character-type, calculated the major and minor device numbers (specific to each
system and obtained from the system source file conf.c) and assigned the file a name.

A log of what MAKEDEV has done is kept in /dev/MAKEDEV.log.

Please remember that the “devicename?” and the device special file name(s) differ. Generally,
one devicename? has one or more associated device special files. For example, “/dev/MAKEDEV
rz6” makes the device special files /dev/rz6a, /dev/rrz6a, /dev/rz6b, /dev/rrz6b,
/dev/rz6c… We will look at specific device types next.

Null
Let’s start with an easy one. There is a character-special file, /dev/null, that is a “data sink”. Data
written to it is discarded; reads from it always return zero bytes. It is typically used to suppress output
from a command (command > /dev/null).

Memory
There are two device special files which address memory: /dev/mem (addressing physical main
memory) and /dev/kmem (addressing virtual main memory). Unless you are a godlike programmer
willing to take risks, these are not for you.

UNIX System Administration

Rudolf Cardinal, August 1995 31

Disks
I will only deal with SCSI disks here. The devicename to be passed to MAKEDEV is rz; the LUN is
(SCSI_ID + 8 * SCSI_CONTROLLER_ID). Sixteen device special files are created. Each begins
rz (block-type) or rrz (character-type). Then comes the LUN. Finally there is a letter that refers to the
disk partition. Usually, a is the root partition, b is the swap partition, c is the whole disk; partitions d
– h vary more and may not be used. As a side issue, chpt (along with newfs) is the command to
redo a partition table, but it’s only really of use when installing UNIX, and rarely even then.

For a disk to be mounted automatically, an entry should go in /etc/fstab (see /etc/fstab
under The UNIX File System). Note that it is the block device that you mount (rz6c, not rrz6c).

Tapes
SCSI tapes use devicename? tz*. The LUN is made up in the same way as for disks. It is irritating,
but the special files’ names are numbered from zero in creation order, not by LUN as for disks. Thus
if you have a tape drive on LUN 4 and another on LUN 5, and you run MAKEDEV tz4 tz5, you
will end up with /dev/rmt0* and /dev/rmt1*, not /dev/rmt4* and /dev/rmt5*. Use the
file command to map device files to SCSI IDs.

Eight special files are created per tape drive, all of them character-type. The name is composed of r
(rewind automatically when the file is closed) or nr (no rewind) followed by mt (“magnetic tape”),
followed by the number, followed by a, h, l or m. These letters indicate the tape density (something,
low, medium, high), relative to the capability of the drive – see mtio(4) for details. Here is the result
of file *mt0* on a system with one TK50 tape drive on SCSI controller 0, SCSI ID 4:

nrmt0a: character special (55/60) SCSI #0 TK50 tape #4 write-locked 6666_bpi
nrmt0h: character special (55/44) SCSI #0 TK50 tape #4 write-locked 6666_bpi
nrmt0l: character special (55/36) SCSI #0 TK50 tape #4 write-locked 6666_bpi
nrmt0m: character special (55/52) SCSI #0 TK50 tape #4 write-locked 6666_bpi
rmt0a: character special (55/56) SCSI #0 TK50 tape #4 write-locked 6666_bpi
rmt0h: character special (55/40) SCSI #0 TK50 tape #4 write-locked 6666_bpi
rmt0l: character special (55/32) SCSI #0 TK50 tape #4 write-locked 6666_bpi
rmt0m: character special (55/48) SCSI #0 TK50 tape #4 write-locked 6666_bpi

See Using tape drives below for commands that manipulate tape drives.

Terminals
Console and serial line terminals are created when you install UNIX.
The devicename? pty* creates sets of 16 network pseudo-terminals (TCP/IP protocol).
The devicename? lta* creates sets of 16 network local area terminals (LAT protocol).
For example, if you want some LAT terminals, you run MAKEDEV lta0. This makes 16 device files.
If you run out, run MAKEDEV lta1 to make some more, et cetera.

Terminal device special files are named /dev/tty*. The console is /dev/console; serial and
LAT terminals are /dev/ttyxx; network pseudo-terminals are /dev/ttypxx, /dev/ttyqxx,
/dev/ttyrxx and so on.2

If you examine the ownership of the device special files, you will see that they are always owned by
the user logged into them at the moment, or root if they are not in use. Furthermore, the /dev/tty
special file refers to whichever terminal you are logged into.

Like /etc/fstab for disks, UNIX must also be told about which terminals to use. The terminal
database is /etc/ttys. If you refer to How UNIX Starts, above, you will see that /etc/init is
run. Well, in multiuser operation init creates a process for each terminal port where a user may log
in. To do this, it reads /etc/ttys. For each terminal marked “on” in this file, init forks and
invokes the command specified on that line in the file (usually getty, which reads the user’s name

2 “tty” stands for teletype.

UNIX System Administration

Rudolf Cardinal, August 1995 32

and invokes login to log in the user and execute the shell). The command is passed the name of the
terminal as the last argument. When the shell ultimately terminates, the main part of init wakes up
and removes the appropriate entry from /etc/utmp, which records current users. init then makes
an entry in /usr/adm/wtmp, where a history of logins and logouts is kept. Then the appropriate
terminal is reopened and getty is reinvoked.

The init command catches the hangup signal (signal number 1, SIGHUP) and interprets it to mean
that /etc/ttys should be re-read. The shell process on each line of ttys which used to be active
(but isn’t) is terminated; a new process is created for each line; lines unchanged in the file are
undisturbed. Therefore, when you have edited /etc/ttys, issue the command kill -HUP 1
to implement the changes. Incidentally, kill -TERM 1 will shut the system down back to single-
user mode, and kill -TSTP 1 will tell init to stop creating new processes, so the system slowly
dies away as users log off and can no longer log on. A later hangup (HUP) will restore full multiuser
operation, and a TERM will initiate a single-user shell. Note that 1 is the process ID of the main part
of init.

Format of /etc/ttys.
First comes the name of the terminal (the file in the /dev directory); then the command associated
with it (usually getty); then the terminal type (vt100, vt200, dialup…); then any flags. Fields
are separated by tabs or spaces. A field with more than one word should be enclosed in double quotes.
Comments are preceded by a hash (#).

Legal terminal types for your system can be found in /etc/termcap.
Valid getty entries can be found in /etc/gettytab.

The flags possible are:

on Enables login
off Disables login (default)
secure Allows root to log in on this terminal, assuming logins are

permitted (off by default)
su Allows a user to su to root (off by default)
nomodem Line ignores modem signals (default)
modem Line recognises modem signals
shared Line can be used for incoming and outgoing connections (off by

default)
termio Line will open with System V default termio attributes (by

default, Berkeley defaults are used)3.
window=” string” Here, string is a window system process that init maintains for

the terminal line.

Assorted examples to illustrate these options:

console ”/etc/getty std.1200” vt100 on secure # Console at 1200bps, 7-bit
ttyd0 ”/etc/getty d1200” dialup on # Dial-up line at 1200bps
tty01 ”/etc/getty std.9600” vt100 on # Serial line; 7-bit VT100
tty01 ”/etc/getty 8bit.9600” vt100 on # The same terminal in 8-bit mode
ttyp0 none network
ttyp1 none network off # Network pseudo-terminals
Type the following all on one line
:0 ”/usr/bin/login -P /usr/bin/Xprompter -C /usr/bin/dxsession -e” none on

secure window=”/usr/bin/Xcfb” # An X-Windows terminal
tty02 ”/etc/getty 8bit.9600” vt100 on modem secure # LAT terminal

Useful examples:

3 UNIX has two historical ‘flavours’: BSD (Berkeley Systems Development, from the University of
California at Berkeley) and System V. One of these is the same as AT&T UNIX, but I can’t remember
which. ULTRIX is a Berkeley UNIX clone.

UNIX System Administration

Rudolf Cardinal, August 1995 33

console ”/etc/getty std.9600” vt100 on secure # console
tty00 ”/etc/getty 8bit.9600” vt100 on secure # direct connect
tty01 ”/etc/getty std.9600” vt100 on secure # direct connect
tty11 ”/etc/getty std.9600” vt100 on modem # LAT
tty12 ”/etc/getty std.9600” vt100 on modem # LAT
tty15 ”/etc/getty std.9600” vt100 off # Laser printer
ttyd0 ”/etc/getty std.9600” vt100 off shared # Modem line
ttyp0 none network secure # Network pseudo-terminal
ttyp1 none network secure # Network pseudo-terminal

LAT configuration
Hah. Did you think that was all? No chance.

The LAT (Local Area Transport) protocol is used by terminal servers to talk to their hosts. It is
relevant to both terminals (vide supra) and printers (vide infra). Having made your LAT special file
(/dev/ttyxx) using MAKEDEV, you must ensure LAT is loaded on your system. You must also tell
the LAT system if any of your terminals are to be used for host-initiated connections only – in other
words, for printing.

The /etc/lcp command is used to start LAT (from rc.local) and to administer it interactively.
Options for lcp:

-s Starts LAT service. Enables connections from LAT terminal servers to
host. If LAT parameters have not been set, they take on default values
specified in the –r option.

-r Resets LAT parameters to the following default values:
multicast timer: 30 seconds
nodename: hostname
node description: “ULTRIX”
servicename: hostname
service description: “ULTRIX LAT SERVICE”

-g Sets groups. Never mind.
–h Sets a list of ttys (the next argument, separated by commas with no

spaces) to be available only for host-initiated connections. (You cannot
use a backslash or a carriage return to break a string; it must all be on
one line). Optionally, you may associate a tty with a specific port on a
specific terminal server by following the tty name with the name of the
server and port, separated by colons. For example:

/etc/lcp -h /dev/tty15:LAT_SERVER:PORT7
-H Sets a list of ttys as being available only for terminal server-initiated

connections.
-m Sets multicast timer (next argument, in seconds; range 10 – 255, default

30).
-n Sets nodename to the next argument. A LAT node must have a

nodename for a terminal user to establish a connection. The nodename
must be unique on the Ethernet.

-N Sets node description to the next argument.
-v Lists the services the node offers (default is one service, hostname). You

can offer more than one service and associate each service with certain
ttys, as in this example (all on one line):

/etc/lcp -v mainservice -v
SERV1:/dev/tty15,/dev/tty16 -v
SERV2:/dev/tty17,/dev/tty18,/dev/tty19

Here, tty15 and tty16 are used for SERV1; tty17, tty18 and
tty19 are used for SERV2; all other LAT ttys are used for the default
service, mainservice. Note that the first service listed is used as the
default. Note also that if you use this interactively, the new list

UNIX System Administration

Rudolf Cardinal, August 1995 34

completely replaces the old.
-V Sets service description. If you define multiple services, the first –V

corresponds to the first –v , and so on.
-t Stops LAT service.
-d Display LAT characteristics.
-z Zeroes error counters.
-c Displays error counters
interval Continuously displays error counters, with interval seconds between each

iteration.
-p Shows which LAT server/port a given tty is connected to. Example:

/etc/lcp -d /dev/tty15

Here’s the simplest entry in rc.local to start LAT:
lcp -s

Here’s a typical entry in rc.local, defining printer ports with –h:

[-f /etc/lcp] && {
/etc/lcp -s -v discovery -V ”South Kent College DECsystem

5000/240” -h /dev/tty33,/dev/tty16,/dev/tty15,/dev/tty34 & echo
’LAT... ’ > /dev/console
}

For explanation of the shell language used here, see Shells and Shell Scripts.

Printers
A typical system will have up to three types of printers: printers plugged into the host, printers
plugged into a terminal server, and “remote” printers (attached to another host). Local and terminal-
server printers must have a device-special file. See Terminals above for details of how to create a
new terminal file. Login should be disabled on terminals attached to printers (the “off” flag should
be present in /etc/ttys). For LAT printers, the terminal device needs no knowledge of the LAT
server or port – all LAT terminal device files are equivalent.

Printers are described in /etc/printcap, the printer capability dabase. There is one entry per
printer. A change to printcap immediately affects the spooling system, unless the affected queue
is active. In this case, the spooling queue should be stopped and restarted (see Printing). Fields in
printcap are separated by colons (:); theoretically each entry is one line, so each line but the last must
end with a backslash (\) so the next line is regarded as a continuation. The first entry gives the
printer’s name(s), separated by a pipe (|). The first name is displayed in the lpc command (see
Printing). The last name given typically identifies the printer fully.

For local printers, the ct field should be set to dev. For LAT printers, set ct to lat. Of course, LAT
must be running and the printer’s /dev/tty* file must be set for host-initiated LAT connections
only – see LAT configuration above.

When a file is printed using the lpr command (see Printing) and no printer is named, and no printer
name is defined in the PRINTER environment variable, the printer named “lp” is used. There
should always be a printer named “lp” in printcap.

You will need to make a spool directory (usually in /usr/spool) for the new printer, and refer to
it in printcap. Do not be overly concerned with the topic of filters : these days, it is the job of the
application to know what kind of printer you are using and UNIX shouldn’t filter anything. Simple
dot-matrix printers may benefit from the lpf filter (of=/usr/lib/lpdfilters/lpf) but for
graphical printers no output filter should be specified, merely the “transparent” – i.e. “do nothing” –
filter, xf (xf=/usr/lib/lpdfilters/xf). It is a good idea to refer to log files, but nothing
much should happen on them.

UNIX System Administration

Rudolf Cardinal, August 1995 35

There is a shell script, /etc/lprsetup, to help you administer printers. It is quite self-explanatory
and knows about all the possible parameters for the printcap database. When you create printers
with lprsetup it makes the spool directory, links output filters and creates a printcap entry for
you.

The best way to get a feel for a complex file is to look at some working entries. Here’s an extract from
a typical printcap, with explanatory notes beside the fields.

@(#)printcap 3.1 (ULTRIX) 4/20/90

lp0|lp|0|local line printer:\
:lp=/dev/lp:\
:of=/usr/lib/lpdfilters/lpf:\
:sd=/usr/spool/lpd:\
:lf=/usr/adm/lpd-errs:

• Here are two printers plugged into a LAT terminal server:

Brother HL8-E on DECServer 300 : CHALLENGER Port 16
finance laser|lp1|1|FINANCE LASER|FL|fl:\

:af=/usr/adm/lp1acct:\ Accounting file name
:br#9600:\ Baud rate
:ct=lat:\ Connection type (dev,lat,remote,network)
:fc#0177777:\ If printer a tty, clear octal flag

values…
:fs#023:\ If printer a tty, set octal flag values…
:ff=^L:\ Form feed string
:fo=true:\ Print form feed when device opened
:lf=/usr/adm/lp1err:\ Error logging file name
:lp=/dev/tty16:\ Device name to open for output
:mx#0:\ Maximum file size (kbytes) or 0
:op=PORT_16:\ The “name” field for LAT ports
:os=:\ Service name (for some terminal servers)
:pl#72:\ Page length (lines)
:pw#255:\ Page width (characters)
:sd=/usr/spool/lpd1:\ Spool directory
:ts=CHALLENGER:\ LAT terminal server name
:xc#0177777:\ If it’s a tty, clear local mode flags

(octal)…
:xf=/usr/lib/lpdfilters/xf:\ Transparent mode filter
:xs#044000:\ If printer a tty, set local mode flags (octal)…
:cf=/wp/shbin/wpp: Cifplot data filter

Finance la70 Dot Matrix on CHALLENGER PORT 15
la70|lp2|2|LA70|fd|Finance Dot:\

:af=/usr/adm/lp2acct:\
:br#9600:\
:fo=true:\
:ff=^L:\
:ct=lat:\
:fc#0177777:\
:fs#023:\
:lf=/usr/adm/lp2err:\
:lp=/dev/tty15:\
:mx#0:\
:of=/usr/lib/lpdfilters/lpf:\ Output filtering program name
:op=PORT_15:\
:os=:\
:pl#66:\
:pw#255:\
:sd=/usr/spool/lpd2:\
:ts=CHALLENGER:\
:xc#0177777:\
:xf=/usr/lib/lpdfilters/xf:\
:xs#044000:

UNIX System Administration

Rudolf Cardinal, August 1995 36

• This one doesn’t look very important!

ether:\
:lp=/dev/null:

• Here’s another LAT printer, but running off a different terminal server:

MIS Fujitsu top printer on JUPITER port 3
MIS_FUJITSU|mis_fujitsu|mf|MF:\

:af=/usr/adm/lp3acct:\
:br#9600:\
:fo=true:\
:ct=lat:\
:fc#0177777:\
:fs#023:\
:lf=/usr/adm/lp3err:\
:lp=/dev/tty34:\
:mx#0:\
:op=PORT_3:\
:pl#66:\
:pw#255:\
:sd=/usr/spool/lpd3:\
:ts=JUPITER:\
:xc#0177777:\
:xf=/usr/lib/lpdfilters/xf:\
:xs#044000:

• Here’s an entry for a Novell printer being accessed remotely:

laserjet4:\
:lp=:\
:rp=mis_laserjet4:\ Remote printer name
:ff=:\
:sd=/usr/spool/lpd17:\
:rm=enterprise-ii:\ Machine name for remote printer

 :mx#0:

For full details of all the options, see printcap(5).

UNIX System Administration

Rudolf Cardinal, August 1995 37

Daemons

Concept
A daemon is a system process; it is not associated with any terminal. Daemons are usually invoked
from rc or rc.local at boot time, but may be started interactively by the superuser. When they run,
they dissociate themselves from the terminal that created them, return control to the process that
called them (obviously, the daemon forks, with one process ending and the other losing its terminal)
and live on in the system.

A brief summary of common daemons
There are daemons to do all sorts of things, from network routing to managing the swap space. Here is
a list of some of the common ones.

Daemon Function

 idleproc [UNIX internal] Process that’s run when nothing else is happening
 pagedaemon [UNIX internal] Memory page manager
 swapper [UNIX internal] Swap space manager
/etc/cron Clock daemon
/etc/elcsd Error logging daemon
/etc/init -a Process control initialization
/etc/syslog System message log daemon
/etc/update Periodically updates the super block of the file system
/usr/lib/lpd Line printer daemon

Networking:

/etc/biod NFS asynchronous block I/O daemon
/etc/inetd Internet service daemon
/etc/lcp LAT control daemon
/etc/mop_mom MOP down-line/up-line load listener (for booting terminal servers!)
/etc/mountd NFS mount request daemon
/etc/nfsd NFS server daemon
/etc/portmap DARPA Internet port to RPC program number mapper
/etc/routed Network routing daemon
/etc/snmpd SNMP (Simple Network Management Protocol) Agent
/etc/telnetd DARPA Telnet protocol server
/usr/etc/lockd Network lock daemon
/usr/etc/rwalld Network rwall server
/usr/etc/statd Network status monitor daemon
/usr/lib/sendmail Internet mail sending daemon
tpathd Trusted path daemon

UNIX System Administration

Rudolf Cardinal, August 1995 38

cron: scheduling processes, such as backups
The clock daemon /etc/cron executes commands at specified dates and times according to the
instructions in /usr/lib/crontab (which is a symlink to /etc/crontab). Once a minute,
cron reads /etc/crontab and decides what to do. Note commands run by cron have root
authority.

Format of /etc/crontab
The format of a line in crontab is as follows:

minute hour day month weekday command

Field definitions:

minute (0 – 59) The exact minute that the command executes
hour (0 – 23) The hour of the day that the command executes
day (1 – 31) The day of the month…
month (1 – 12) The month of the year…
weekday (1 – 7) The day of the week; Monday = 1, Tuesday = 2…
command The complete command sequence to be executed. It must conform

to Bourne shell (sh) syntax.

The five integer fields may be specified as follows:

• a single number in the specified range
• two numbers separated by a minus (–), meaning an inclusive range
• a comma-separated list of numbers, meaning any of the numbers
• an asterisk, meaning all legal values

A percent (%) symbol in the sixth field is translated to a new-line character. Only the first line of this
field (up to a percent sign or end-of-line) is executed by the shell; the other lines are made available to
the command as standard input.

Sample crontab:

* * * * * /usr/lib/atrun
0 04 * * 1,2,3,4,5 /backup >>/backup.log 2>&1
15 4 * * * (cd /usr/preserve; find . -mtime +7 -a -exec rm -f {} \;)
5 4 * * * sh /usr/adm/newsyslog
15 2 1 * * for i in /usr/man/cat[1-8]; do df $i | grep -s /dev && find $i -
type f -atime +28 -a -exec rm {} \; ; done
0 02 * * 2-6 /etc/mailem.bat >> /mail.log 2>&1

For example, /usr/lib/atrun is run every minute; /backup is run at 4am on Mondays to
Fridays inclusive.

The at and batch commands
Syntax:

at time [day] [file]
at -r job…
at -l [job…]
batch [file]

The at and batch commands use a copy of the named file (or standard input) as input to sh or csh
at a later time. A cd command to the current directory is inserted at the beginning, as are assignments

UNIX System Administration

Rudolf Cardinal, August 1995 39

to all environment variables. (Note however that open files, traps and priority are lost.) The script
runs with the user and group ID of the creator of the copy file (the person who ran at or batch).

The at command allows the user to specify the time at which the command should be executed, while
commands queued with batch execute when the load level of the system permits.

If a user’s name appears in /usr/lib/cron/at.allow, they can use at and batch. If there is
no at.allow, they will be denied access if their name appears in /usr/lib/cron/at.deny. If
neither exists, only the superuser can submit jobs (to give everyone access, have an empty at.deny).
These files consist of one user name per line.

Time is 1 to 4 digits. It can be followed by A (AM), P (PM), N (noon) or M (midnight); these are case-
insensitive. One- and two-digit numbers are interpreted as hours; three- and four-digit numbers as
hours and minutes. For three-digit numbers, the first digit is the hour (0 – 9). If no letters follow the
digits, 24-hour time is used. You can also use “at hh:mm”, “at h:mm”, “at ham”, “at hpm”,
“at noon” and “at midnight”.

Day is either a month name followed by a day number, or a day of the week. If the word week
follows, the command is invoked seven days later. Standard abbreviations are recognised. For
example:

at 8am jan 24
at 1530 fr week

at commands depend on the execution of /usr/lib/atrun by cron. The time resolution
(“granularity”) of at depends on the frequency of execution of atrun (a default system executes
atrun every 15 minutes).

Standard output (1) or error output (2) is lost unless it is redirected.

The at and batch commands write the job number to standard error.

Options:

-r Removes scheduled jobs. Parameter is the job number. Only the superuser can
remove another’s jobs.

-l Lists all job numbers submitted by the user. To see all jobs currently scheduled,
use

ls -l /usr/spool/at

In this directory, there are files named yy.ddd.hhhh.* which are scheduled
jobs, lasttimedone, containing the last hhhh at which at executed, and
past, containing activities in progress.

UNIX System Administration

Rudolf Cardinal, August 1995 40

Printing

The printing system depends on the lpd daemon. Ensure that it is started by rc and do nothing
further with it. Low-level printer control and configuration is covered in Devices / Printers. Here I
will deal with the act of printing and high-level control.

The lpr command – print files
Syntax:

lpr [options] [file…]

Useful options:

-h No banner page
-Pprinter Send to printer
-wn Page width of n characters
-zn Page length of n lines
-x Assume the files do not require filtering before printing

Typical command:

lpr -hxPprinter file

The lprm command – remove jobs from printer queue
Syntax:

lprm [-Pprinter] [–] [job…] [user…]

Without any arguments, lprm deletes the currently active job if it owned by the user. If the – flag is
specified, all jobs that a user owns are removed. If the superuser uses –, the whole spool queue is
emptied. If a username is specified, lprm attempts to remove jobs belonging to that user (only useful
to the superuser). A job may be removed by number (obtain the number from lpq , see below). The
command announces the name of each file it removes: if it says nothing, it did nothing. It kills and
restarts daemons as necessary.

The lpq command – examine spool queue
Syntax:

lpq [options] [job…] [user]

With no arguments, lpq reports on any jobs in the default queue.
Job ordering is FIFO (first in, first out).

Options:

+n Scans and displays the queue every n seconds (default 30) until the queue is
empty.

-l Displays the status of each job on more than one line if necessary.
-Pprinter Specifies a printer. Otherwise the PRINTER environment variable is used, or lp.

The lpstat command – printer status information
Syntax:

UNIX System Administration

Rudolf Cardinal, August 1995 41

lpstat [options]

Options:

-a [printers] Are printers accepting requests?
-d Print name of default system printer
-o [printers] Status of print requests
-p [printers] Status of printers
-r Status of the line printer daemon, lpd
-s Status summary
-t All status information
-u [users] Status of users’ print requests

Note all options that take a list of arguments want a comma-separated list. If you include spaces
between items, you must put the list in quotes.

The lpc command – line printer control
Syntax:

/etc/lpc [command [argument…]]

The line printer system is controlled by the superuser using lpc. Without any arguments, an
interactive mode is entered; use ? to list commands and help command for further information on a
command.

UNIX System Administration

Rudolf Cardinal, August 1995 42

Using tape drives
Remember the difference between /dev/rmt* and /dev/nrmt*: the latter doesn’t rewind after a
program closes the device.

Magnetic tape manipulation: mt
Syntax:

mt [-f tapedevice] command [count]

This command performs command, count times (default 1) on device tapedevice (default is the TAPE
environment variable or /dev/nrmt0h). Important commands are as follows:

bsf Backspace count files
fsf Forward-space count files
offline, rewoffl Rewind the tape and place the unit off-line
retension Retensions the tape (move tape one complete pass between

the end and the beginning)
rewind Rewinds the tape
status Prints status information

Examples:

mt -f /dev/rmt01 rewind
mt -f /dev/nrmt1h fsf 3

Backing up data: dump
Syntax:

/etc/dump [key [argument…] filesystem]

dump copies all files changed after a certain date from a specified filesystem to a file/pipe/tape/disk.
The key specifies the date and other options. dump requires operator attention in situations where an
end-of-tape occurs, when dump ends or when an unrecoverable read error occurs. dump can write to
all users in the “operator” group when it needs attention, and talks to its user at the control
terminal. It gives progress reports and asks yes/no questions when it has problems. Nevertheless, it is
feasible to run dump as part of an automated backup, and a script is given here to do so.

Options (if none are given, 9u is assumed):

0-9 Specifies the dump level. All file modified since the last date given in
/etc/dumpdates, for this filesystem, for lesser levels, will be dumped. If
no date is found, all files are dumped: thus level 0 causes a full dump.

B Specify size of dump medium, in kilobytes.
d Specify tape density (bits per inch).
f Place the dump on the file/device specified by the next argument. If the

name of the file is –, dump writes to standard output. Default device is
/dev/rmt0h.

n Notifies all users in the group operator when dump needs attention.
S Prints output file size in bytes, or number of volumes for devices.
s Specify tape size in feet
u Writes the date of the beginning of the dump to /etc/dumpdates if

the dump is successful. The format of /etc/dumpdates is one (free
format) record per line: filesystem name, dump level and ctime format
(see ctime(3) for details). It is possible to edit this file if you are

UNIX System Administration

Rudolf Cardinal, August 1995 43

superuser and careful.
W Tells the operator which file systems need to be dumped (taken from

/etc/dumpdates and /etc/fstab). All other options are ignored;
dump exits immediately.

w Lists only those filesystems that need to be dumped.

Examples:

dump 9Bf 400 /dev/rra2a /dev/ra0a
Dumps the filesystem /dev/ra0a to RX50 diskettes.

dump 0undf 6250 /dev/rmt?h /usr/users
Dumps the filesystem /usr/users to a 6250bpi tape on a TU78 tape drive.

dump 0Sf test /
Reports the number of bytes to be dumped for a level 0 dump of the root filesystem.
Note: the file test is not made.

dump -0uf /dev/nrmt1h /usr
Dumps the entire /usr filesystem to a 8Gb DAT drive on /dev/nrmt1h.

Here is a complete automated script to backup a computer running Oracle databases. The script is run
in the middle of the night and backs up to an 8Gb DAT drive (so it should never run out of space as
the drives aren’t that big). Note that dumping the filesystem / does not dump all files! Each physical
filesystem must be listed. Note also that the non-rewind device is used – if the rewind device were to
be used, each dumped filesystem would overwrite the previous!

#! /bin/sh
trap ’echo ”*** backup: aborted on” ‘date‘; exit 1’ 1 2 3 15
flag=
ps -auxww | egrep ’dbclose|nrmt1h’ | grep -v grep && flag=Y
if test $flag
then
 echo ”*** backup: BACKUP FAILED. SCRIPT ALREADY ACTIVE OR DEVICE IN USE!”
else
 echo ”*** backup: Script started. Closing Oracle: ” ‘date‘
 su – oracle -c /usr/users/oracle/bin/dbclose
 echo ”*** backup: Attempt to close Oracle finished. Beginning backup.”
 cd /
 mt -f /dev/nrmt1h rewind
 dump -0uf /dev/nrmt1h /
 dump -0uf /dev/nrmt1h /usr
 dump -0uf /dev/nrmt1h /var
 dump -0uf /dev/nrmt1h /database1
 dump -0uf /dev/nrmt1h /database2
 dump -0uf /dev/nrmt1h /database3
 mt -f /dev/nrmt1h rewind
 echo ”*** backup: finished on ” ‘date‘
 echo ” Starting Oracle.”
 su – oracle -c /usr/users/oracle/bin/dbstart
 echo ”*** backup: Oracle started. Script terminating.”
fi

This script is owned by root and run with a crontab entry whose command is /backup
>>/backup.log 2>&1. As it is run by cron, it executes with root authority (see Cron above).
Standard error is redirected to standard output (2>&1) so both are appended to /backup.log.

Restoring data: restore
Syntax:

/etc/restore key [name…]

UNIX System Administration

Rudolf Cardinal, August 1995 44

restore reads files created by dump.

The f key can be used to specify a device or image file other than /dev/rmt0h. Arguments other
than keys and their modifiers are file and directory names to be restored. Unless the h key is specified,
a directory name refers recursively to all files and directories within it.

Important keys:

i Interactive restore. Highly recommended. The command help gives a
summary of available commands.

f As for dump.
h Extracts actual directories, not the files that they reference. Prevents

heirarchical restoration of complete subtrees.
v Verbose. Causes restore to tell you what it’s doing.
r Extract files into current directory. (A restoresymtab file is created to

transfer information between incremental restores. Remove this when
you’ve finished.)

t List the names of the specified files if they exist on the dump media. If no
name is given, the root directory is listed (so if the h flag isn’t given, the
whole contents is listed).

x Extracts files specified.

Examples:

1. Here’s how to restore an entire filesystem to a new disk from the default tape:

/etc/newfs /dev/rra0g ra60
/etc/mount /dev/ra0g /mnt
cd /mnt
restore r

A further restore can be done to get an incremental dump back.

2. Using dump and restore in pipeline to transfer a file system:

dump 0f – /usr | (cd /mnt; restore xf –)

3. Restoring the /database1 filesystem interactively from a dump produced by the
backup script given earlier:

mt -f /dev/nrmt1h rewind
mt -f /dev/nrmt1h fsf 3
cd /database1
restore -ivf /dev/nrmt1h

(followed by add and extract commands within restore)

UNIX System Administration

Rudolf Cardinal, August 1995 45

Archive manipulation: dd, cpio, tar

dd

The dd(1) command copies data from one place to another while performing some conversion (record
size, ASCII to EBDIC, that sort of thing).

cpio

The cpio(1) command – related to ar(1) but better – is a filter designed to let you copy files to or
from an archive.

Syntax:
cpio -i [-C] [keys] [patterns]
cpio -o [keys]
cpio -p [keys] directory

Options:
-i Copies files that match the specified pattern. Otherwise copies all files. Extracts

files from standard input (which is assumed to be the product of a previous
cpio -o) and places them in the user’s current directory tree. For files with
the same name, new replaces old unless -u is used.

Only files that match patterns are selected. Multiple patterns may be specified.
Default pattern is *.

-C Old-style compatibility option.

-o Copies out the specified files. Reads standard input to obtain a list of files,
copies them to standard output together with path name and status information.

-p Copies files into specified destination directory, which must exist. Reads
standard input to obtain a list of path names of files that are conditionally
created. This list of files is copied into the destination directory tree. For files
with the same name, new replaces old unless -u is used.

Keys:
Key Valid for Description
6 UNIX Sixth Edition format.
a -o, -p Retains original access times of input files.
B Block I/O with 5,120 bytes per record. Only meaningful when

directing I/O to/from /dev/rmt?h or /dev/rmt?l.
b Swaps both bytes and half words.
c -i, -o Creates header information in ASCII format.
d Creates subdirectories as needed below the destination directory.
f Copies all files except those that match the specified pattern.
k -i, -o, -p Enables symbolic link handling.
l Creates links wherever possible.
m Retains modification times.
r -i Interactively renames files. If you enter a null line, file is skipped.
s Swaps bytes while copying files in.
S Swaps half words while copying files in.
t Prints table of contents of the input.
u Copies files unconditionally.
v Verbose.

Examples:

UNIX System Administration

Rudolf Cardinal, August 1995 46

1. Copy the contents of a user’s directory into an archive:

ls | cpio -o > /dev/rmt0l

2. Duplicate a directory heirarchy:

mkdir ~phares/newdir
cd ~phares/olddir
find . -print | cpio -pdl ~phares/newdir

3. Copy all files and directories with names containing “chapter” into smith’s home
directory and underlying directories:

find ~smith -name ’*chapter*’ -print | cpio -o >
/dev/rmt0h

tar

The tar(1) (“tape archiver”) command saves and restores multiple files to and from a single archive.
Tar files are popular on the Internet, particularly on FTP servers.

Syntax:

tar [key] [name…]

Options:

c Create new archive
r Write named files to the end of the archive. (r for write!?)
t List the names of files
u Add named files if they didn’t exist or have changed
x Extract named files (default: all files)
0-9 Substitute the number for the device unit number in /dev/rmt?h. Default 0.
C Used to perform a directory change prior to archiving
H Help
V Display extended verbose information
d Use /dev/rra1a as the default device – though the mdtar(1) command is

recommended for use with floppy disks.
f Use the next argument as the name of the archive. If the name is –, use standard

input/output. Here is an example that moves the directory fromdir to the
directory todir:

cd fromdir; tar cf – . | (cd todir; tar xpf -)
h “Save a copy of the actual file on the output device under the symbolic link

name, instead of placing the symbolic information on the output.”
i Ignore checksum errors
l Complain if links to the files dumped cannot be resolved. (Default: no errors

printed.)
m Don’t restore modification times
o Don’t put owner/mode of directories into the archive
p Restore the named files to their original modes
v Write name of each file treated (preceded by function letter) to diagnostic

output
w Print the action to be taken, followed by the filename, then wait for user

confirmation (a word beginning with ‘y’).

Example:

To archive files from /usr/include and /etc to the default output tape, type

UNIX System Administration

Rudolf Cardinal, August 1995 47

tar c -C /usr/include . -C /etc .

UNIX System Administration

Rudolf Cardinal, August 1995 48

Networking

Introduction
UNIX is an operating system that lends itself well to networking – the Internet grew up on UNIX. It is
important to have at least a vague idea of the layered approach to networking. At the highest level is
the application: imagine this saying “I want to get a file from machine X”. At the next level down is
the service: a service is something like “getting files – FTP” or “logging in to another machine –
Telnet” or “resolving network addresses – ARP”. A service is bound to an underlying protocol, such
as IP (Internet protocol) or TCP (transmission control protocol). Protocols goven the movement of
data from a service on one computer to a service on another: they wrap around the packet of data,
saying things like “make way: message from machine Z to machine X”. Note that the word “protocol”
is often used in a looser sense to mean an agreed system for communication (its true meaning) –
therefore some services call themselves protocols. At the lowest level is the hardware: the wires,
network cards and telephone lines carrying signals.

TCP/IP: addressing
The Internet runs on the TCP/IP procotol. In this, each machine on the network – by which we mean
the whole Internet, worldwide – has a unique IP address. This is a four-byte address4, usually written
with dots (.) between the numbers: 179.140.2.200. In order to bring some order to this, organizations
are assigned addresses depending on their size, dividing the address into networks. A class A network
is for big organizations: the first byte designates the network and the other three designate addresses
within the network. The organization’s machines have numbers like 153.xx.xx.xx: they have 2563

addresses available. A class B network has 2562 possible addresses within it: the first two bytes
designate the network. A class C address has 256 addresses within it: the first three bytes designate
the network.

Class A networks have a first byte in the range 0 – 126; class B networks have a first byte in the range
128 – 191 (and a second byte in the range 1 – 254); class C networks have a first byte in the range 192
– 223 (and a second byte in the range 0 – 255, and a third byte in the range 1 – 254). Network 127 is
reserved for the local loopback address (see below). Avoid numbering hosts so that their host fields
contain all ones (or, for compatibility with older systems, all zeros) – this will conflict with network
broadcasts (see below).

The network address is assigned by the Network Information Center (NIC) in the United States5.
Systems on a network need to know what portion of the four-byte IP address is the NIC address (the
network portion) and which is for local machines (the subnet or host address). Therefore a netmask is
assigned. This has binary ones in the network fields and binary zeros in the subnet address fields.
Therefore a class C site has a netmask of 255.255.255.0.

Netmasks are complicated by subnet routing. If you have a class B network, for example, you may
want several subnets (mapping to different pieces of cable). Hosts outside the network do not need to
know whether it is using subnetworks: all routing is transparently handled inside the network. You
might choose to use the whole of the third byte as a subnet address; therefore your netmask would be
255.255.255.0. However, you might want to use only the first three bits of the third byte for subnet
routing (giving you up to eight subnets); then your netmask will be 255.255.224. Even class C
networks can have subnets in this manner. However, splitting bytes in this way makes things
complicated for humans, who like decimal arithmetic!

4 Although it seems unlikely that the world has 2564 (four billion) computers on the Internet, the
subdivision of IP address bytes into network and subnet fields wastes many numbers, and addresses
are running out. An eight-byte Internet addressing scheme is proposed (giving up to 1⋅8 × 1019

possible addresses).
5 DDN Network Information Center, SRI International, Room EJ291, 333 Ravenswood Avenue,
Menlo Park, CA 94025, United States of America. Telephone (800) 235-3155 or (415) 859-3695. E-
mail: nic@nic.ddn.mil.

UNIX System Administration

Rudolf Cardinal, August 1995 49

If you do not use subnet routing, your netmask will be 255.0.0.0 (class A), 255.255.0.0 (class B) or
255.255.255.0 (class C). If the netmask is anything else, subnet routing is in use; however, a netmask
of 255.255.255.0 might be a class C network with no subnets or a class B network using 8 bits for
subnet routing. Valid decimal values for the host (non-NIC assigned) fields of the network mask are
255 (eight subnet bits), 254 (seven), 252 (six), 248 (five), 240 (four), 224 (three), 192 (two), 128 (one)
and 0 (zero).

The Internet Protocol has a system whereby messages can be sent to all hosts on a network. This is
called broadcasting. One address is assigned to be the broadcast address – it is the same for all hosts
on the network. The broadcast address is the NIC address followed by either all ones or all zeros,
according to local convention. All ones is the standard for broadcast addresses. Therefore a class A
network (NIC address 15) has a broadcast address of 15.255.255.255; a class C network (NIC address
158.8.62) has a broadcast address of 158.8.62.255.

It is wise not to use 0 or 255 as any part of your address fields. It’s not worth the risk of conflict with
systems that use these number for special things. You may lose a couple of addresses, but it’ll save
hassle. Use addresses and network numbers 1 – 254. Similarly, avoid the network 127.x.x.x: this is
used for loopback testing.

LANs and beyond: address resolution, routing and complex services
In a real WAN, other systems need to exist too, and I will summarise them. First, there is a system for
mapping Internet address to Ethernet addresses – Address Resolution Protocol (ARP). The reverse of
this is logically called RARP, and is often more useful. (An Ethernet address is a six-byte number
built into the Ethernet hardware, and manufacturers guarantee to supply unique Ethernet addresses in
their interfaces.)

Then, systems must exist to route packets of information travelling from one IP address to another
over the physical network structure. Whenever a packet travels from one piece of Ethernet cable to
another, or from Ethernet to fibre-optic, or from a T1 to a telephone line, the machine attached to both
must route the packet. Routing also involves making intelligent decisions about the fastest route to
take: if two systems are linked by a fibre-optic and a telephone link, the router should pick the foptic!

There are many other protocols that exist on the Internet – time synchronisation and SNMP, for
example – but I won’t go into detail now.

For those of you interconnecting UNIX and PC networks, it is vital to be aware that UNIX systems use
the Ethernet II frame type. (The frame level is one I didn’t mention, lying in between the protocol
and the hardware.)

Internet addresses for humans
The numerical IP addresses are not useful for humans. Therefore there is a separate textual naming
system that is mapped to the underlying IP address. A system is named machinename.domain
(and a user of that system will be user@machinename.domain). The domain is composed of a
heirarchy of names, separated by full stops, of the form organization.type.country. The
country field is a two-letter country code (uk, il); addresses in the USA have no country code. The
type field is co (commercial), ac (academic)6, gov (government), mil (military) and so on. So you
get domains like cam.ac.uk (Cambridge University), harvard.edu (Harvard University) and
demon.co.uk (Demon Internet Ltd). A fully specified machine names is
skcmis.demon.co.uk.

Each domain should have a name server that supplies IP addresses in return for names. I will not
describe this process here.

6 In the USA, academia has the type edu.

UNIX System Administration

Rudolf Cardinal, August 1995 50

UNIX System Administration

Rudolf Cardinal, August 1995 51

Configuring UNIX

The simple way: using netsetup
First, you must know the IP address of the computer together with the IP broadcast address and your
netmask. Then log in as root and run netsetup install. You will be asked:
1. to verify your system’s name
2. to supply your network address. This is the NIC-assigned network address (class A, B or C),

without subnets. So if you are installing the host 179.140.254.200 on a class B network with
subnet routing, enter 179.140.

3. whether you are using subnet routing
4. for your host address (254.200 in this example7 – note that if you are using subnet routing, you

must enter the subnet number as part of the host number)
5. for the number of bits to use for subnet routing, should you be using it
6. whether to use zeros or ones for the IP broadcast address – use all ones
7. for the device name and unit nuber of your network interface (typically ln0 for a Lance Ethernet

interface)
8. for a network name for your network address, and any aliases for it
9. for the host name, abbreviations, network address and host address for each host on the network

If you specify the install parameter to netsetup, all previous network configurations are
overwritten.

Essential files

The hosts database, /etc/hosts
This is a list of all known hosts (computers). Each line should begin with the full Internet address and
continue with the name of the host, followed by any aliases. Comments are preceded by a hash (#).
Begin each entry on a new line.

In addition to the ‘real’ hosts, there is usually an entry for localhost. This gives the “Internet
address” of the interface used for internal loopback testing and local communications (usually the loop
network interface, lo0). By default this address is 127.0.0.1. If our hypothetical system is called
julia, its default hosts file would read

#
Host Database
#
127.0.0.1 localhost
174.140.254.200 julia randomalias

The networks database, /etc/networks
Just like /etc/hosts, the networks database is a list of all known networks. This time the fields
are name, number, aliases. The loopback network (as we have just seen, default 127) is called
“loop”, alias “loopback”; the Ethernet network is known as “ethernet” unless you bother to
enter a name. Therefore the default networks database for our example machine would read

#
Internet networks
#
loop 127 loopback
ethernet 179.140

7 The manuals System and Network Setup (page 2–13) and netsetup(8) contradict each other here!

UNIX System Administration

Rudolf Cardinal, August 1995 52

The trusted hosts database, /etc/hosts.equiv
This database contains a list of hosts that are ‘trusted’. When an rlogin or rsh request is received
from a host listed in this file, no further validity checking is performed (passwords are not requested).
When a remote user is in the hosts.equiv file, that user is defined to be equivalent to a local user
with the same user ID.

The file is a list of names, as in:

host1
-host2
+@group1
~@group2

The file is scanned sequentially and the scan stops when the requesting host is found. A line
consisting of a hostname gives trust to anyone logging in from that host; if preceded by a minus (–) all
users from that host are not trusted. A line consisting just of + means that all hosts are trusted – this is
very dangerous. The +@ and –@ syntax is specific to the Yellow Pages (YP) service and give and
revoke trust to and from groups of hosts (as served by YP).

User-by-user checking: .rhosts
The hosts.equiv file has the same format as .rhosts . When a user executed rlogin or rsh ,
the .rhosts file for that user (on the receiving machine, obviously) is appended to the
hosts.equiv file for checking. If a user is excluded by a minus entry from hosts.equiv but
included in .rhosts, that user is trusted. If the user is root, only .rhosts is checked (in this
case, /.rhosts). This has nasty security implications!

To avoid security problems, the .rhosts file must be owned by either the user on the receiving
machine, or root, and it may not be a symbolic link. (The danger this statement hints at is that a user
may log in and add an entry to someone’s .rhosts file, such as root’s!)

You can put two entries on one line, separated by a space. If the remote host is equivalenced by the
first entry, the user named by the second is allowed to supply any name to the -l option (see Client
Programs / Rlogin) as long as it exists in /etc/passwd. To give you the most dangerous example,
suppose the machine discovery has the following line in /.rhosts (recall attempts on the root
user only check /.rhosts, not /etc/hosts.equiv):

hubble rudolf

Then rudolf can log on to discovery from hubble as root without supplying a password. If
the entry were in /etc/hosts.equiv instead, rudolf could log on to discovery from
hubble as any user except root without a password.

Interface configuration: ifconfig
Every network interface must be initialized with /etc/ifconfig. Normally, the command to do so
lives in /etc/rc.local and the interfaces are initialized at boot time. The syntax is as follows:

/etc/ifconfig interface [address [dest_address]] [parameters]

The interface parameter is a name and unit number, for example ln0. The address is either a host
name present in /etc/hosts, or an Internet address (xx.xx.xx.xx).

The following parameters are of interest:

up Marks an interface up.

UNIX System Administration

Rudolf Cardinal, August 1995 53

down Marks an interface down. Transmission is not attempted.
arp Ethernet devices use ARP to map between Ethernet and Internet

addresses. This is the default.
-arp Don’t do this.
netmask Sets the network mask.
dstaddr Specifies the correspondent on the other end of a point-to-point link.
broadcast Specifies the address for broadcasts to the network.

An example of an ifconfig command is shown below, under Routers / Setting up a router.

The Internet daemon, inetd
This daemon handles most of the Internet service functions. When it starts, it reads a configuration
file (by default /etc/inetd.conf) and opens a socket (see Processes / Theory / Sockets) for each
specified service. When it receives a connection on a stream socket or a packet on a datagram socket it
invokes the server specified in the configuration file to handle the request. The configuration file is
reread whenever inetd recieves a HANGUP signal (see Processes / Sending signals to processes).

The Internet daemon configuration database, /etc/inetd.conf
For each service to be handled by inetd, a single line should exist in /etc/inetd.conf giving
the following information:

service name (must be in /etc/services, see below)
socket type (stream or dgram)
protocol name (must be in /etc/protocols, see below)
delay (wait or nowait)
program name (the server program’s name, fully specified)
arguments (up to five arguments for the server)

Servers marked as ‘wait’ must be able to handle all requests that come to it during its lifetime;
inetd will not invoke any new instances while there is one running. If marked as ‘nowait’, a new
invocation of the server will be started for every incoming request.

Here are some lines from a typical /etc/inetd.conf:

ftp stream tcp nowait /usr/etc/ftpd ftpd
telnet stream tcp nowait /etc/telnetd telnetd
talk dgram udp wait /etc/talkd talkd
bootp dgram udp wait /usr/etc/bootpd bootpd -i

The protocol database, /etc/protocols
This file lists the known protocols used on the Internet. For each protocol, a single line should contain
the following information:

official protocol name
protocol number
aliases

Here is a typical protocol database:

#
@(#)protocols 6.1 (ULTRIX) 11/19/91
Internet (IP) protocols
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
pup 12 PUP # PARC universal packet protocol

UNIX System Administration

Rudolf Cardinal, August 1995 54

udp 17 UDP # user datagram protocol

The service database, /etc/services
This file lists the known services used in the Internet. Each line should contain:

official service name
port-number/protocol-name
aliases

Examples are best: here is part of our /etc/services file:

@(#)services 6.1 (ULTRIX) 11/19/91
services 1.16 (Berkeley) 86/04/20
#
Network services, Internet style
#
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
…
ftp 21/tcp
telnet 23/tcp
…
whois 43/tcp nicname
…
bootp 67/udp # boot program server
…
#
UNIX specific services
#
exec 512/tcp
biff 512/udp comsat
login 513/tcp
…

Routers
Routers (also known as gateways) are hosts that are connected to multiple LANs. There is a network
interface for each LAN, and each interface has a unique host name and Internet address. Routers can
transfer data between the LANs to which they are attached.

Setting up a router
Add the following line to /etc/rc.local:

/etc/ifconfig device-name-number pseudohostname broadcast a.b.c.d netmask w.x.y.z

where device-name-number is the new Ethernet interface and pseudohostname is the new host name
that the router will be known as on the new network.

Then enable the routed daemon by placing its command in rc.local. Normally you will only
have to uncomment out the lines:

if [-f /etc/routed]; then
/etc/routed & echo -n ‘ routed’ >/dev/console
fi

Edit the /etc/networks file to include the name, number and alias of the additional network.

Reboot to invoke the routed daemon.

UNIX System Administration

Rudolf Cardinal, August 1995 55

Accessing a router
On every machine that needs to access the router…
1. Edit /etc/networks to include the details of the additional network you wish to access

through the router.
2. Enable the routed daemon in /etc/rc.local.
3. Reboot (or invoke the routed daemon manually).

NFS – the Network File System
NFS enables users to share files over the network. A client computer can mount or unmount file
systems and directories from an NFS server. Once mounted, a remote file system or directory can be
used just as a local file system. Typically, a client mounts one or more remote file systems or
directories at boot time, if entries exist in the /etc/fstab file.

Four programs implement the NFS service: portmap, mountd, biod and nfsd. A client’s mount
request is transmitted to the remote server’s mountd daemon after obtaining its address from
portmap. A port mapper is a Remote Procedure Call (RPC) daemon that maps RPC program
numbers of network services to their User Datagram Protocol (UDP) or Transmission Control Protocol
(TCP) protocol port numbers. The mountd daemon checks the access permission of the client and
returns a pointer to the file system or directory. Subsequent access to that mount point and below goes
through the pointer to the server’s NFS daemon (nfsd) using remote procedure calls. Some file
access requests (write-behind and read-ahead) are handled by the block I/O daemons (biod) on the
client.

If you are using NFS, you may use the NFS locking service: this supports file and file region advisory
locking on local and remote systems, important when several users or processes access the same file
simultaneously. (Advisory locks are not enforced.)

Automatic NFS setup
1. Read the sections on server and client setup, so you understand the concepts involved.
2. Run /etc/nfssetup and answer its questions. It’s quite self-explanatory.

Setting up an NFS server

1. Mark file systems and directories for export – /etc/exports
This file defines the NFS file systems and directories that can be exported by a server (compare
/etc/fstab, which tells a client which remote NFS drives to mount). Only local file systems and
directories can be exported, and a full pathname must be given. For example, to export the file system
/usr/bin/oodle to the world, with no special permissions, add the following entry:

/usr/src/oodle

To export the same file system to a client named endeavour only, use this:

/usr/src/oodle endeavour

Obviously, to deny NFS access to a file system, remove or comment out its entry in /etc/exports.
(Comments begin with a hash – # – as always.)

When you have modified /etc/exports, run showmount -e. This makes the changes take
effect immediately; otherwise the file will be checked when next mountd receives a request.

The full syntax of the export file is:

UNIX System Administration

Rudolf Cardinal, August 1995 56

pathname [-r=#] [-o] [identifier_1 identifier_2 …]

where

pathname Name of a mounted local file system, or a directory of a mounted local
file system. The pathname must begin in column 1.

-r=# Map client superuser access to user ID #. If you want client superusers to
access the file system or directory with the same permissions as a local
superuser, use -r=0. The default is -r=-2, which maps a client
superuser to nobody, thus limiting access to world-readable files

-o Export file system or directory read-only.
identifiers Host names (or netgroups under Yellow Pages, or both) separated by

white space, that specify the access list for this export. If no access list is
specified, anyone can access it.

There can only be one entry per file system or directory exported.

Each file system that you want to export must be explicitly defined – exporting root (/) will not
allow clients to mount /usr, since it is a separate file system.

Export permissions are not “inherited”: if you export /usr and /usr/local, /usr/local has a
completely separate set of export attributes. So /usr could be read-only while /usr/local is read-
write. Mount access is checked against the closest exported ancestor: let me give an example. System
black exports /usr with read-write permission (to everyone) and /usr/local/bin with read-
only permission (to everyone). If system blue mounts /usr/local/bin/random, it has read-
only permission to it. If it mounts /usr/local/bin, it has read-only permission to it. If it mounts
/usr/local/etc, it has read-write permission to it. If it mounts /usr/local, it has read-write
permission to it – and thus to /usr/local/bin! Obviously, this is a strange example, but
instructive.

2. Load the NFS server daemons from /etc/rc.local
You need to run portmap, mountd and the NFS daemon. Be sure to add the NFS daemons to the
rc.local file after and Yellow Pages entries, or if you have none, after the following entry:

/etc/ifconfig lo0 localhost

Add this lot:

%NFSSTART%
echo -n ’NFS daemons’ >/dev/console
if [-f /etc/portmap]; then
 /etc/portmap; echo -n ’ portmap’ > /dev/console
fi
if [-f /etc/mountd -a -f /etc/portmap -a -s /etc/exports]; then
 /etc/mountd -i; echo -n ’ mountd -i’ > /dev/console
fi
if [-f /etc/nfsd -a -f /etc/portmap]; then
 /etc/nfsd 4 & echo -n ’ nfsd’ > /dev/console
fi
%NFSEND%

Note that the “4” parameter to nfsd starts 4 NFS daemons. This is a typical number but depends on
your system’s load.

If you are going to run the NFS locking service, add this lot just before the # %NFSEND% entry:

%NFSLOCKSTART%
echo ’Enabling NFS Locking’ >/dev/console

UNIX System Administration

Rudolf Cardinal, August 1995 57

[-f /usr/etc/nfssetlock] && {
 /usr/etc/nfssetlock on & echo ’nfs locking enabled’

>/dev/console
}
[-f /usr/etc/statd] && {
 /usr/etc/statd & echo -n ’statd ’ > /dev/console
}
[-f /usr/etc/lockd] && {
 /usr/etc/lockd & echo ‘lockd’ > /dev/console
}
%NFSLOCKEND%

3. Reboot the system

/etc/shutdown -r now

Notes
If you are running in multiuser mode and you want to start NFS-related commands and daemons, run
these:

/etc/portmap
/etc/mountd
/etc/nfsd 4 &
/usr/etc/rwalld &
/etc/biod 4 &

Do not run nfssetlock, statd or lockd while in multiuser mode. The transition from kernel-
based to daemon-based locking can lose locking information.

Setting up an NFS client

1. Load NFS client daemons from /etc/rc.local
NFS clients must run the portmap and biod daemons. If you want your system to be notified when
an NFS server is going down, you must run the rwalld daemon. If you are enabling NFS locking,
you need an entry for nfssetlock. By default NFS locking is disabled.

Add the following to /etc/rc.local:

%NFSSTART%
if [-f /etc/portmap]; then
 /etc/portmap; echo -n ’ portmap’ > /dev/console
fi
if [-f /etc/biod]; then
 /etc/biod 4 & echo -n ’ biod’ > /dev/console
fi

Optionally, rwalld (which must come after portmap):

if [-f /usr/etc/rwalld -a -f /etc/portmap]; then
 /usr/etc/rwalld & echo -n ’ rwalld’> /dev/console
fi

Optionally, the NFS locking service:

%NFSLOCKSTART%
echo ’Enabling NFS Locking’ >/dev/console
[-f /usr/etc/nfssetlock] && {
 /usr/etc/nfssetlock on & echo ’nfs locking enabled’

>/dev/console

UNIX System Administration

Rudolf Cardinal, August 1995 58

}
[-f /usr/etc/statd] && {
 /usr/etc/statd & echo -n ’statd ’ > /dev/console
}
[-f /usr/etc/lockd] && {
 /usr/etc/lockd & echo ‘lockd’ > /dev/console
}
%NFSLOCKEND%

Finally:

%NFSEND%

2. Mount file systems using /etc/fstab
Use /etc/fstab to mount file systems you always want to have mounted. For the syntax, see The
UNIX File System: /etc/fstab. The NFS-specific options are:

bg Background. If the first mount fails, retry the mount in the
background the number of times specified (default 10,000).

grpid All files or directories created in the file system being mounted
are created so that they inherit their parent’s ID regardless of the
setting of the gid bit in their parent’s directory. In the absence of
this option, all files or directories created in the file system inherit
the group ID of the running process.

hard Retry the NFS operation (not the mount, the access) request
until the server responds. This option applies after the mount
has succeeded. Use this when mounting read-write file
systems.

intr Allow hard mounted file system operations to be interrupted.
nintr Disallow the above.
noexec Binaries (executable files) cannot be executed from this file

system.
nosuid The setuid and setgid programs cannot be executed from

this file system.
pgthresh=n Set the paging threshold in kilobytes.
port=n Set server IP port number to n.
retrans=n Set the number of NFS operation retransmission to n. This applies

after the mount has succeeded.
retry=n Set number of mount failure retries to n.
ro Read-only
rsize=n Set read buffer size to n bytes.
rw Read-write
soft Return an error if the server doesn’t respond to an NFS operation

(not mount). Do not use for read-write file systems.
timeo=n Set NFS timeout to n tenths of a second.
wsize=n Set write buffer size to n bytes.

Defaults:

rw,hard,intr,retry=10000,timeo=11,retrans=4, \
port=NFS_PORT,pgthresh=64

For further options relating to how quickly a client sees updates to a file or directory that has been
modified by a host, see mount(8nfs).

Example:

/usr/src@spice:/spice/usr/src:ro:0:0:nfs:bg

UNIX System Administration

Rudolf Cardinal, August 1995 59

Be sure to use the bg option: otherwise the client may fail to reboot if a server is unavailable.

Manually mounting and dismounting remote file systems
The syntax for mounting NFS file systems is

/etc/mount -t nfs [-f -r -v] [-o options] device directory

where

-r Mount read-only.
-v Verbose: reports what happened.
-o options See above
device Either

host:remote_name
or

remote_name@host
directory Local mount point (usual rules apply).

To mount the example given above, type:

mount -t nfs -o bg,ro spice:/usr/src /spice/usr/src

The syntax for unmounting NFS file systems is

/etc/umount [-f -v] directory

where

-f Fast unmount: the client unmounts the file system or directory
without notifying the server. This can avoid the delay of waiting for
acknowledgement from a server that is down.

-v Verbose: reports what happened.

Do not use the nfs_mount or nfs_umount commands; work with mount and umount. The one
exception is the use of nfs_umount -b in the /etc/rc.local file of client systems: this
broadcasts a message informing NFS servers that the machine no longer has any NFS filesystems
mounted. It is done in case the machine had crashed while it had NFS filesystems mounted, and
allows the servers to “clean up”. This command is automatically added by the nfssetup command.

NFS security

Superuser access over the network
For increased security, don’t allow client systems superuser access to exported file systems.

This may cause problems with mailing to root@client if the client’s /usr/spool/mail is a
remotely mounted file system. If the server has a root mailbox (/usr/spool/mail/root), the
client will receive notification of such messages but won’t be able to read them. If there is no such
mailbox on the server, one will be created with an ownership of –2 (nobody). This allows all root
users that import the file system to read the root mailbox on the server. To work around this, create
the aliases “root” and “admin” for the normal username of the system’s administrator: this avoids
using the real root mailbox.

Port monitoring

UNIX System Administration

Rudolf Cardinal, August 1995 60

Only privileged users can attach to some Internet ports (“privileged ports”). NFS doesn’t normally
check that a client is coming in through one of these. If you activate this checking, you ensure that file
access requests were generated by the client kernel and not forged by an application program. To
activate NFS server port checking, type

/etc/nfsportmon on

Guess how you turn it off.

Increasing security by not acting as an NFS server
I hope that’s self-explanatory.

Limiting the client systems that are allowed
And that.

Troubleshooting

Some file operations fail
Tough. Not all locking operations work through NFS, even with NFS locking enabled. In the worst
case, data written to a file in append mode can be lost if other processes are writing to the same file.
Moral: don’t use NFS to operate on files that are likely to be modified by several users simultaneously.

Clock differences
The timestamps of a file are determined by the server. If the server’s and client’s clock are more than
an hour out, you may have problems with applications that depend on both local time and the
create/modify/access time attributes of files.

Network or server failures
Hard-mounted file systems retry indefinitely; soft-mounted file systems return an error. Hard-
mounting is the default if you didn’t specify soft mounting when you mounted. If a process is blocked
for a long time, NFS prints this to the console and error logger:

NFS server hostname not responding, still trying

A failed operation on a soft-mounted system results in this error:

NFS operation failed for server hostname, Timed out

Run through these checks:

1. Check the server is up and running. If the server is called yellow, type this from the client:

/etc/rpcinfo -p yellow

If the server is up, you should see something like this:

program vers proto port
 100004 2 udp 1027 ypserv
 100004 2 tcp 1024 ypserv
 100004 1 udp 1027 ypserv

 100004 1 tcp 1024 ypserv
 100007 2 tcp 1025 ypbind
 100007 2 udp 1035 ypbind
 100007 1 tcp 1025 ypbind
 100007 1 udp 1035 ypbind
 100003 2 udp 2049 nfs
 100005 1 udp 1091 mountd

UNIX System Administration

Rudolf Cardinal, August 1995 61

2. If you got that list, use rpcinfo to check if the mountd server is running. For the above
example, type

/etc/rpcinfo -u yellow 100005 1

If mountd is running, you should get

program 100005 version 1 ready and waiting

3. If these two rpcinfo commands fail, try this:
Log into the server. Is it running properly? Ensure /etc/portmap, /etc/mountd and
/etc/nfsd are running.
If it’s running, check the Internet connections.
Check the Ethernet connections of server and host.

Remember you don’t need biod or any NFS server daemons running to be an NFS client.

Process blocking in client programs
This could be because

… the server is down. Restart it.
… the nfsd daemon is malfunctioning. Kill it and run nfsd again.
… two or more processes are deadlocked. Kill one of them.

System hangs part way through boot
You probably forgot the background (bg) option on one of your NFS mounts, and the server is down.

Slow remote file access
If no biod daemons are running on the client, start some. Here’s how to start four:

/etc/biod 4 &

Check your Ethernet connection. Typing netstat -i will show you if packets are being dropped.
Typing netstat -c shows you how much retransmission is occurring: 0.5% retransmission is
high: bad interface, bad connection. If you suspect a bad Ethernet board, type netstat -s to see if
any UDP packets have been dropped (this may occur because of bad checksums, in turn causing NFS
operations to time out). Many bad transmissions (badxid > 0.1%) indicates the timeout in the mount
operation is too small. Increasing the timeout may not only fix this, but improve performance.

How a typical network starts
Do not attempt to learn about individual daemons from this: it is merely a list of things to expect.

• As we have said (see How UNIX starts) rc calls rc.local. This runs ifconfig to configure
the Ethernet interface. The ln0 device is the first Lance Ethernet interface; lo0 is a software
loopback device for testing and so forth. The primary network interface should be first. Typical
commands are of the form:

/etc/ifconfig ln0 ‘/bin/hostname‘ broadcast 179.140.255.255 netmask 255.255.0.0
/etc/ifconfig lo0 localhost

• If the machine is a router, /etc/routed is loaded.
• If NFS is being used, the NFS daemons (portmap, mountd, nfsd, biod, rwalld) and,

optionally, the NFS locking daemons (statd, lockd) are loaded
• If the machine is sending mail, /etc/sendmail is loaded.
• If LAT is being used, /etc/lcp is started.
• When rc.local exits, control returns to rc. Here, /etc/inetd is loaded. This controls all

the Internet services (telnetd, ftpd, fingerd etc.).
• If SNMP is to be used, rc loads /etc/snmpd.

UNIX System Administration

Rudolf Cardinal, August 1995 62

Remote booting – the bootp protocol
The Internet BOOTP protocol is a UDP-based protocol that allows diskless machines to find out their
Internet addresses, the address of a bootserver, and the name of a file to boot.

The bootpd server is either started from /etc/rc.local, or by inetd (preferable). In the latter
case an entry must be made in /etc/inetd.conf, and the -i flag supplied.

Options:

-d Logs all requests and responses
-i Use this (in inetd.conf) if bootpd is started by inetd. For an

example of an inetd.conf entry, see The Internet daemon configuration
database above.

The bootpd server reads its configuration file, /etc/bootptab, when it starts. When a request
arrives, bootpd checks to see if the configuration file has been modified, and read it again if it needs
to. The /etc/bootptab file has the format:

#
/etc/bootptab: database for bootp server (/usr/etc/bootpd)
#
home directory

/usr/local/bootfiles

default bootfile

defaultboot

end of first section

%%

Now we have one line per client.
If a bootfile cannot be found, ”bootfile.host” is also tried.
#
#
host htype haddr iaddr bootfile
(Ethernet) (Internet)

hostx 1 02:60:8c:06:35:05 99.44.0.65 ultrix
hosty 1 02:07:01:00:30:02 99.44.0.03 vms

The htype is always 1 (Ethernet). The haddr field can use
a period (.), hyphen (-) or colon (:) as separators.
The bootfile entry is used if the client does not know the name
of the file it wants to boot.

MOP file retrieval – mop_mom
Here is a summary from the manual:

The /etc/mop_mom program listens for download (or dump upload) requests and spawns
/usr/lib/dnet/mop_dumpload to process them.

Normally, mop_mom is started from rc.local. A client system can request a file by name;
if it does not, mop_mom searches its node database for a file to offer. The node database is that
administered by addnode(8) (q.v.). It is the DECnet node database. If mop_mom comes up with no
absolute path, it searches /usr/lib/mop; if it can’t find the file there it searches
/usr/lib/dnet. (“Files in /usr/lib/dnet must be in lower-case with an extension.”)
Otherwise the filename is interpreted literally.

UNIX System Administration

Rudolf Cardinal, August 1995 63

If no filename is given, or the LOADUMP_SECURE environment variable is set, the Ethernet
address of the requesting machine is looked up in the nodes database. Setting the LOADUMP_SECURE
environment variable (using setenv LOADUMP_SECURE on at the command line, or permanently
by loading mop_mon with the command LOADUMP_SECURE=on /etc/mop_mon).

Essentially, mop_mon is useless and you should use bootp (part of the TCP/IP protocol suite).

Some important client programs for users and administrators
Most of these programs need a daemon to be loaded from inetd.conf; I will list them with the
name of the program.

ftp (requires ftpd)
File Transfer Protocol: how to move files between computers. Launch FTP in the following way:

ftp [options] [hostname]

The following options are valid:

-d Debugging
-g Disables filename expansion
-i Disables interactive prompting during multiple file transfers
-n Disables autologin during the initial connection. If autologin is enabled,

FTP checks the local user’s .netrc file for an entry describing an
account on the remote machine. If no entry exists, FTP uses the local
user’s name as the default user name on the remote machine, and prompts
for a password.

-v Displays all statistics and responses from the remote server

Format of the .netrc file, since I mentioned it:

This file lives in the user’s home directory. Each line defines options for a specific machine,
or defines defaults. The “default” line must be the first if it is present. Fields are separated by
spaces or tabs. A default line has the following format:

default default-machine-name

A machine line has the following format:

machine machinename options

Valid options are:

login Login name
password Password
account Additional password
macdef Defines a macro (like the FTP macdef command). A blank line

must follow the macro lines to terminate macro definition.

Here is an example of a .netrc file:

machine cactus login smith
machine nic.ddn.mil login anonymous password anonymous
machine palm.stateu.edu login smith password uonrelcome
macdef byenow
quit

UNIX System Administration

Rudolf Cardinal, August 1995 64

If you put passwords in a .netrc file, don’t give the file world read permission!

The following commands can be used at the ftp> prompt:

? [command] Synonym for help.
! Invokes a local shell.
$ macroname args Invokes a macro.
account [password] Supplies a supplemental password (if none is given, you

will be asked for it).
append localfile

[remotefile]
Appends localfile to a file on the remote system (by
default, of the same name).

ascii Sets file transfer type to network ASCII. The default.
bell Beeps after each command is completed.
binary Sets file transfer type to support binary image transfer.

Make sure you use this before transferring programs!
bye Quits.
case Toggles conversion of remote filenames to lower-case

during mget commands. Off by default.
cd remotedirectory Changes remote directory.
cdup Moves up one directory level on the remote machine.
close Closes FTP session.
cr Toggles CR stripping during ASCII file retrieval (default

on).
debug debugvalue Sets debug level.
delete remotefile Deletes remotefile.
dir [remotedir [localfile]] Catalogues remotedir (or current remote directory);

optionally, places the output in localfile.
disconnect Same as close.
form format Sets file transfer format to format. Default is file.
get remotefile [localfile] Gets remotefile; calls it localfile.
glob Toggles wildcard expansion for the multiple-file

commands. Default on.
hash Toggles the printing of a hash (#) for every data block

(1024 bytes) transferred.
lcd [directory] Change local directory.
ls [remotedir [localfile]] Like dir, but shorter output.
macdef macroname Defines a macro. Blank line ends. Use \ to quote

characters literally. Use $ for argument substitution ($1,
$2, etc.). Use $i to have the macro loop: the macro is
executed once for each argument (which is substituted for
$i).

mdelete remotefiles Deletes remotefiles. If globbing is enabled, the
filenames are first expanded with ls.

mdir remotefiles localfile Obtains a directory of remotefiles and places it in
localfile.

mget remotefiles Gets remotefiles.
mkdir directory Makes directory on the remote machine.
mode modename Sets file transfer mode (default is stream).
mput localfiles Puts localfiles onto the remote machine.
nmap [inpattern outpattern] Allows mapping of filenames; useful for systems with

different filename conventions. See ftp(1c) for details.
ntrans [inchars [outchars]] Filename character translation mechanism. See ftp(1c)

for details.
open host [port] Opens a connection to host.
prompt Toggles interactive prompting during multiple file

transfers. Off by default.

UNIX System Administration

Rudolf Cardinal, August 1995 65

proxy ftp-command Executes an FTP command on a secondary control
connection. This allows you to transfer files between two
FTP servers by opening connections to both of them. The
first command should be a proxy open. Type proxy
? to see the commands you can execute on the secondary
connection. The following commands are different under
proxy:
• open doesn’t define new macros during autologin
• close doesn’t erase macro definitions
• get and mget transfer files from the primary to the

secondary connection
• put, mput and append transfer files from the

secondary to the primary connection
Third-party file transfer depends on the secondary
computer’s support for the FTP PASV command.

put localfile [remotefile] Puts localfile onto the remote machine [as remotefile].
pwd Prints remote working directory.
quit Synonym for bye.
quote arg1 arg2 … Sends data verbatim to the remote FTP server.
recv Synonym for get.
remotehelp [command] Requests help from remote FTP server.
rename from to Remote rename.
reset Clears the reply queue.
rmdir directoryname Removes remote directory
runique Toggles the storing of files on the local system with

unique filenames (appending .1, .2 etc. if the file
exists, reporting the new name, aborting with an error
if .99 is exceeded). Default: off.

send Synonym for put.
sendport Toggles the use of PORT commands.
status Shows current status.
struct structname Sets file transfer structure to structname. Default: file.
sunique Toggles the storing of files on the remote system with

unique filenames (see runique). The remote computer
must support the STOU command. Default: off.

tenex Sets the required file transfer type for TENEX machines.
trace Toggles packet tracing.
type [typename] Displays or sets the file transfer type, which is network

ASCII by default.
user username [password

[account]]
Identifies you to the remote FTP server. Usually useful
after an open command has opened a connection but
failed to authorise you.

verbose Toggles verbose mode. On by default.

Abort file transfers by pressing ^C. Gets take longer to interrupt than puts, for obvious reasons.

Using filenames for I/O redirection.
1. A filename of “-” represents standard input or output.
2. If a filename begins with “|”, the remainder of the filename is interpreted as a shell command,

and that command’s standard input or output is used as appropriate. If the command includes
spaces, the whole filename (including |) must be enclosed in quotes (””). A useful example is
“dir |more”.

Excluding users.
Users named in /etc/ftpusers are prevented from transferring files by the ftpd daemon.

UNIX System Administration

Rudolf Cardinal, August 1995 66

ping (administrative)
The analogy is from submarines and sonar (to “ping” a ship is to fire a sonar pulse at it and see what
comes back). Ping sends packets to a computer and checks that they come back. It’s the most basic test
that a machine is up and connected to the Internet. You can control the ping process in detail, but the
useful syntax is:

ping hostname

You will either get the response “host alive” or – after a delay – “no answer from host”.

telnet (requires telnetd)
This is the usual command to log into a remote computer. While you can run telnet on its own and
use a command-line interface, the normal syntax is:

telnet hostname[:port]

Usually, you do not need to specify a port: a TELNET server is looked for at the default port. Some
machines run several TELNET services, so you can specify a port number. Typically, a computer
provides a normal TELNET facility for its users on the default port, and a MUD or other time-wasting
activity on a port that you have to access by number!

finger (requires fingerd)
Finger is not exclusively a network command. finger by itself prints the login name, full name,
terminal, idle/login times, office location and phone number for every user logged on. The syntax
finger user displays more detailed information about a particular user (including home directory,
login shell, their .plan file if it exists, and the first line of their .project file if it exists). The
syntax finger user@host displays this same information for a remote user.

rlogin (requires rlogind)
Logs in to another UNIX machine. For details of security and authorization, see The Trusted Hosts
Database above. The full syntax for rlogin is:

rlogin rhost [-ec] [-8] [-L] [-l username]

The options are as follows:

-ec Uses c as the escape character, instead of the tilde (~).
-8 Allows an 8-bit data path at all times.
-L Runs session in litout mode.
-l username Logs in as username, not as your current user.

Your remote terminal type is the same as your local terminal type (set by the TERM environment variable); ^S and ^Q provide flow
control as normal. Assuming the escape character is the usual tilde (~), the sequence ~. on a new line disconnects from the remote
host. A tilde followed by ^Z suspends the session.

rsh (requires rshd)
Syntax:

rsh host [-l username] [-n] command

The remote shell connects to the remote host (as the specified user or the local user if none is given)
and executes the specified command, copying the command’s standard input/output/error from or to
standard input/output/error. You cannot specify a password with a command (so the equivalence
system described in The Trusted Hosts Database above must be used). The -n option redirects all

UNIX System Administration

Rudolf Cardinal, August 1995 67

command input to /dev/null; you must use this if you run rsh as a background task from csh
and do not desire input to the command (failure leads to a blocked csh).

Shell metacharacters that are not quoted are interpreted on the local machine; those that are quoted on
the remote machine. Therefore, note the difference between the following:

rsh otherhost cat remotefile >> localfile
rsh otherhost cat remotefile ”>>” otherremotefile

The standard host names8 for local machines are also commands in /usr/hosts , so if you put this
directory on your search path you can omit “rsh”.

Do not use rsh for interactive commands; use rlogin or telnet instead.

Stop signals only stop the local rsh process.

netstat (administrative)
There are four formats for this command.

netstat [-Aan] [-f address_family] [system] [core]

This displays a list of active sockets for each protocol.

netstat [-himnrs] [-f address_family] [system] [core]

This presents the contents of one of the other network data structures according to the option selected.

netstat [-n] [-I interface] interval [system] [core]

Given an interval, this form continuously displays packet traffic information on the configured
network interfaces.

netstat [-I interface -s] [system] [core]

This form provides statistics for network interfaces.

For detailed syntax and options, see netstat(1). One useful command is netstat -i, which
displays status information for autoconfigured interfaces.

ruptime (administrative) (requires rwhod)
(Note that rwhod is normally loaded from inetd.conf, but is usually disabled by default to keep
network traffic down.)

ruptime is like uptime, but remote.

8 The standard name is the first name listed for a host in /etc/hosts; any others are nicknames.

UNIX System Administration

Rudolf Cardinal, August 1995 68

Rebuilding the kernel
I am not going to discuss modifications to the kernel at a source-code level. However, there are
situations where kernel parameters need to be changed; at these times you must rebuild the kernel.

Editing the configuration file
I am assuming that you are using a RISC MIPS processor running ULTRIX and that the machine is
called hubble. For such a machine, the kernel configuration file would be
/sys/conf/mips/HUBBLE.

Here is a typical configuration file:

Global definitions

ident "HUBBLE" Defines the host name (in upper case)
machine mips Defines the hardware
cpu "DS5100" Defines the processor
maxusers 64 The maximum number of simultaneously active users

allowed on the system. Make the number greater than or
equal to the number in your license agreement.

processors 1 The number of processes in the system
maxuprc 50 The maximum number of processes one user can run

simultaneously (default 50).
physmem 64 An estimate of the amount of physical memory, in

megabytes. It does not limit the amount of memory used,
but it is used to calculate the system page table size. Make
it greater than or equal to the amount of RAM.

timezone 0 dst 3 Number of hours west of Greenwich Mean Time (negative
indicates east). The dst parameter indicates daylight
savings time; it is followed by a number requesting a
particular DST correction algorithm. The values are USA 1
(default), Australia 2, Western Europe 3, Central Europe
4, Eastern Europe 5.

smmax 1024 Defines the maximum number of pages of virtual memory
at which a shared memory segment may be sized. VAX
pages are 512 bytes; RISC pages are 4096 bytes. Defaults
are 256 and 32 respectively, giving 128 kilobytes in either
case.

smseg 8 The maximum number of shared memory segments per
process (defaul 6).

scs_sysid 1 “Identifies a host uniquely on the CI star cluster to the SCS
subsystem. Default 1.”

Other definitions, not in use on this system, are:

maxuva num Maximum aggregate size of user virtual memory, in
megabytes, default 256. Doesn’t apply to RISC processors.

bufcache percent Percentage of physical memory to be allocated as file
system buffer cache (10 ≤ percent < 100).

swapfrag num When a process requires additional swap space, it is
granted number 512-byte blocks each time. Minimum 16;
default 64; must be a power of two.

maxtsiz num Largest text segment in megabytes. (VAX default 12,
RISC default 32.)

maxdsiz num Largest data segment in megabytes (default 32).
maxssiz num Largest stack segment in megabytes (default 32).
smmin num The minimum number of pages of virtual memory at which

a shared memory segment may be sized. VAX pages are
512 bytes; RISC pages are 4096 bytes. Default 0.

smsmat num The highest attachable address for shared memory

UNIX System Administration

Rudolf Cardinal, August 1995 69

segments, in megabytes. VAX default MAXDSIZE, RISC
default 0 (no check is made).

smbrk num The default spacing between the end of a private data
space of a process and the beginning of its shared data
space, in pages of virtual memory (VAX pages are 512
bytes, RISC pages are 4096 bytes). The VAX default is 64
(32K); the RISC default is 10 (40K). This value is
important, because once a process attaches shared
memory, private data cannot grow beyond the beginning of
shared data.

Options definitions

options QUOTA Allows disk quotas to be set.
options INET Provides Internet communication protocols. The inet

pseudodevice must also be listed in the Pseudodevice
Definitions section.

options NFS Enables support for the NFS protocol. This requires (1)
that you also set the RPC option; (2) that you list the nfs
pseudodevice in the Pseudodevice Definitions section.

options RPC Allows RPC-based applications. It is required when the
NFS option is specified. The rpc pseudodevice must also
be set.

options DLI Allows the mop_mom program to be active (see the
Networking section of this guide). The dli pseudodevice
must also be set.

options UFS Enables the standard, local file system. If you do not use
NFS, you must use UFS. Without this parameter, the
system will be considered diskless. The ufs pseudodevice
must be set.

options NETMAN ?
options LAT Enables LAT support. List the lta and lat

pseudodevices in the Pseudodevice Definitions section.
options PACKETFILTER ?
options AUDIT Loads the audit subsystem. To specify the base size of the

audit buffer in bytes, use AUDIT = number. The default
is 16K.

options SYS_TPATH Enables the trusted path mechanism. The sys_tpath
pseudodevicemust also be set.

Other definitions, not in use on this system, are:

EMULFLT Enables emulation of the floating point instruction set if it
is not present in hardware. Don’t delete this option!

FULLDUMPS Enables full dump support.
DECNET Enables DECnet support. The decnet pseudodevice

must be set.
SYS_TRACE Enables the system call tracing capability. The

sys_trace pseudodevice must be set.
SMP Enables symmetric multiprocessor capability. Don’t use

with a single processor (performance will suffer).

The makeoptions definitions for RISC processors

makeoptions ENDIAN="-EL" Put this line in. There’s no choice.

System image definitions

config vmunix root on rz0a swap on rz0g dumps on rz0g

The general format for this line is:

UNIX System Administration

Rudolf Cardinal, August 1995 70

config filename configuration-clauses

The filename argument is the name to be given to the compiled kernel, by default vmunix. The
configuration-clauses define the root file system, pagin/swapping space and crash dump space.
Keywords are as follows:

root [on] device
Specifies the device for the root file system. For diskless clients, use “root on ln0”.

swap [on] device [and device] [size x] [boot]
The first device specifies the device/partition for a paging and swapping area. The second
device allows you to specify another, so swapping will be interleaved. The size clause can
be used to specify a non-standard partition size for one or more swap areas (x is in 512-byte
sectors).

If you specify swap on boot, the a partition of the booted device becomes the root, and
swap space is assumed to be the b partition of the same device.

dumps [on] device
Specifies the partition and device where crash dumps are to be stores. The device must be on
the same controller as the boot device. The default dump device is the first swap device.

Device definitions

adapter ibus0 at nexus?
controller sii0 at ibus? vector sii_intr
disk rz0 at sii0 drive 0
disk rz1 at sii0 drive 1
disk rz2 at sii0 drive 2
disk rz3 at sii0 drive 3
disk rz4 at sii0 drive 4
disk rz5 at sii0 drive 5
disk rz6 at sii0 drive 6
disk rz7 at sii0 drive 7
tape tz0 at sii0 drive 0
tape tz1 at sii0 drive 1
tape tz2 at sii0 drive 2
tape tz3 at sii0 drive 3
tape tz4 at sii0 drive 4
tape tz5 at sii0 drive 5
tape tz6 at sii0 drive 6
tape tz7 at sii0 drive 7
device ln0 at ibus? vector lnintr
device mdc0 at ibus? vector mdcintr

These are all quite hardware-specific (meaning “check your manual”). The question marks ask the system to
calculate the correct address. I hope that SCSI tapes and disks, at least, are obvious.

Pseudodevice definitions

A pseudodevice is an operating system component for which there is no associated hardware. Each line has the
following format:

pseudo-device name [num]

Our sample system uses the following:

pseudo-device nfs Network File System protocol support.
pseudo-device rpc Remote Procedure Call facility.
pseudo-device dli DLI support of mop_mom activity.
pseudo-device pty Pseudoterminal support. Default 32. Specify num in

increments of 16 if you need more than 32
pseudoterminals (i.e. if you want 58, say 64).

pseudo-device loop Network loopback interface.
pseudo-device ether 10Mb/s Ethernet
pseudo-device ufs Local file system support.

UNIX System Administration

Rudolf Cardinal, August 1995 71

pseudo-device netman ?
pseudo-device inet DARPA Internet protocols.
pseudo-device lat Local area terminal (LAT) protocols. If you list this, you

must also list lta.
pseudo-device lta 64 Pseudoterminal driver. Default 16. Specify num in

increments of 16, as for pty. If you list this, you must also
list lat.

pseudo-device scsnet Systems Communications Services (SCS) network
interface driver.

pseudo-device msdup ?
pseudo-device packetfilter ?
pseudo-device sys_tpath Trusted path support.
pseudo-device audit Audit support. “Provides the generation of the file

‘hostname‘/audit.h, which causes the appropriate
files to be rebuilt when a new system is generated.”

Other pseudodevices, not in use here, are:

presto Kernel support for ULTRIX Prestoserve on the DS5500.
decnet DECnet support.
sys_trace Support of the system call trace capability.
bsc Support of 2780/3780 emulation (VAX only).

Generating the kernel and activating it
The easiest way to do this is to run /etc/doconfig. The recommended procedure is as follows:

1. Save the running vmunix as vmunix.old.
2. Move /genvmunix to /vmunix.
3. Reboot the system to single user mode. (If it comes up in multi-user mode, kill -

TERM 1 will return to single user mode; see Terminals above).
4. Check file systems.
5. Mount the /usr file system.
6. Run the doconfig program. (When execution is complete, make a note of the message

doconfig prints showing the path and location of the new vmunix.)
7. Move /vmunix to /genvmunix.
8. Copy the new vmunix (from the message noted above) to /vmunix.
9. Reboot the system.

This procedure ensures that you are running the generic kernel: this is recommended for the
recognition of new hardware. In practice, I have never had problems simply performing steps 1, 6, 8
and 9.

The process of running doconfig is slightly dangerous, as it is possible to destroy your existing
confiiguration file. (doconfig also has the function of generating a specific kernel configuration file
from the generic one, and has a tendency to copy the generic configuration file on top of the one you
just spent ten minutes editing.) Proceed as follows:

1. Enter your system name, in lower case, when asked.
2. Say no to “A system with that name already exists. Replace it?”.
3. Say no to “Do you want to edit the configuration file?” unless you do.
4. Your kernel will be made.

UNIX System Administration

Rudolf Cardinal, August 1995 72

Software subsets
The software that makes up UNIX is organized into subsets to make system management easier. The
setld command is used to manage software subsets.

Syntax:

/etc/setld [-D root-path] -l location [subset…]
 /etc/setld [-D root-path] -d subset…

/etc/setld [-D root-path] -i [subset…]
/etc/setld [-D root-path] -v subset…
/etc/setld [-D root-path] -c subset message

 /etc/setld [-D root-path] -x location [subset…]

The options are

-D Specify root-path as the root directory for an operation. The default is / for
all operations except -x, when the default is the current directory. This
option allows you to operate on off-line mounted systems (e.g. plugging a
disk into your system and working with that).

-l Load software from the distribution mounted on location. If a subset is not
named, a menu of available subsets is presented.

-d Delete subset(s) from the system. All files in the subset which have not been
modified since installation are unlinked (deleted). Some subsets are marked
undeletable to avoid nasty happenings. If a subset is required by other
subsets, you will be warned.

-i Inventory the system or any specified subset.
-v Verify the subset.
-c Configure the subset, passing message to the subset control program.
-x Extract subsets from the distribution media mounted on location. If a subset

is not specified, a menu is presented.

The location can be a device (e.g. /dev/rmt0h), a directory (e.g. /mnt/RISC/software) or a
remote machine (e.g. hostname:).

UNIX System Administration

Rudolf Cardinal, August 1995 73

Shells and shell scripts

What is a shell?
The shell is the program that accepts commands from a terminal and executes them. A shell is
normally run when a user logs in; which shell is run depends on that user’s entry in /etc/passwd
(q.v.). “Standard” UNIX comes with two shells: sh (the standard or Bourne shell, also known as sh5
as it derives from UNIX System V) and csh (the C shell, which has C-like syntax). Many other shells
have been written; most follow the general syntax of either sh (such as the Korn shell, ksh) or csh
and add facilities such as command histories. In addition, most shells have a version called a
restricted shell, usually prefixed with “r”. (The restricted Bourne shell is called rsh5, not rsh,
because rsh already stands for “remote shell”.) Restricted shells limit the commands a user can
execute.

I will deal mainly with sh here, with a short section on the main differences in csh.

Simple and background commands
The sh prompt is $. The csh prompt is csh>. The superuser prompt in either shell is #.

The basic syntax of all commands is

command arg1 arg2 arg3 …

When the shell sees this, it first checks to see if command is an internal shell command (such as
cd)9. If it is, it executes the command. If not, it tries to find the file command. If command includes
an absolute pathname (e.g. /bin/ls, ./myprog) the shell tries to run that file. If not (e.g. ls,
myprog), then it searches the path (see below). Assuming it finds command and has authority to
execute it, it creates a new process and runs command in it, passing the arguments to command.
(More details are to be found under Processes above.)

If you append an ampersand (&) to the command, the shell does not wait for the command to complete
but reports its process number and returns you to the prompt. This is called background execution.
The wait command waits for all background processes to complete.

Standard input, output, error. Redirection and pipes.
If you are a C programmer, you will be familiar with standard input (stdin), output (stdout) and
error (stderr). The idea is that all I/O to a program goes via file channels. These can be channels to
files on disk, or to terminals and other special devices. All programs are supplied with three channels
when they start: 0 (stdin), 1 (stdout) and 2 (stderr). Normally, a program reads from stdin,
writes to stdout and prints urgent error messages to stderr. Generally, all three point to the
controlling terminal, so you can type input to the program and see its output.

However, all of these channels can be redirected to different files or devices. The syntax for a typical
redirected command is

command arguments… <infile >outfile 2>>errorfile

This command will receive standard input from infile, be it a normal file or a device special file.
Standard output will go to outfile, overwriting it if it exists. If no channel numbers are given, you
see, standard input or output is assumed. However, to redirect standard error we must specify its

9 Shells create a new process to execute external commands; a process includes a working directory
and changing directory in a sub-process of the shell doesn’t affect the shell itself. Therefore the cd
command must be executed within the shell process.

UNIX System Administration

Rudolf Cardinal, August 1995 74

channel number (2). You could use 1>outfile or 0<infile if you wanted to, of course. The >>
notation tells the shell to append output to errorfile rather than overwriting it.

Sometimes it is useful to send standard error to the same place as standard output. You can do this by
making a copy of the channel. The following appends standard error and standard output to
logfile:

command arguments… >>logfile 2>&1

The &1 means “a copy of channel 1”. Very occasionally, you might need to swap channels; for
example, you can swap standard output and standard error using “3>&1 1>&2 2>&3” – using a
temporary channel 3. You can use “<&-” or “>&-” to close a file descriptor (channel).

You can also redirect I/O to processes as well as files and devices. This uses a mechanism called a
pipe (discussed more fully under Processes). It is a way of attaching the standard output channel of
one command to the standard input channel of another, transferring data between the two processes
directly. Here is a typical example, piping the output of ls -al to grep in order to search for lines
beginning with a d (thus finding all directories), and piping that to more so that the output comes to
the terminal one page at a time:

ls -al | grep ’^d’ | more

Finally, if you want to send output to a terminal and a file, pipe it to tee(1). tee has the syntax

tee [-i] [-a] [file…]

and copies its standard input to standard output and also file(s). The -a option causes it to append to
file(s); the -i option causes it to ignore interrupts.

Paths and environment variables
Just like DOS, UNIX has environment variables. These are text strings that programs can use to
obtain information; for example, Oracle looks at environment variables to find its utility program
files. Some environment variables are particularly significant because the shell uses them. These are:

$MAIL Before the shell issues a prompt, it checks this variable. If the
file it refers to has been modified, the shell prints “you have
mail” before prompting for the next command. This variable is
usually set in the .profile file (see below) in the user’s login
directory.

$HOME The default argument for the cd command. Usually the user’s
home directory, set in the login profile.

$PATH The search path. Each time a command is executed, this list of
directories is searched for an executable file with the name of
the command. If $PATH isn’t set then the current directory,
/bin and /usr/bin are searched by default10. Otherwise
$PATH consists of directory names separated by :. For
example,

PATH=:/usr/bin:/bin:/usr/ucb
specifies that the current directory should be searched first (the
null string before the first :), then the listed directories.

10 That’s what the manual says. I dispute this; I think the shell searches nothing, not even the current
directory, if $PATH is empty. In this situation every command must have a fully-specified pathname,
like ./myprog or /usr/ucb/vi.

UNIX System Administration

Rudolf Cardinal, August 1995 75

If the command contains a / then the path is not used; the
command name is treated as a fully-specified pathname.

$PS1 The primary shell prompt (default “$ ”).

$PS2 The secondary shell prompt, used when further input is required
(default “> ”).

$IFS The set of characters used for blank interpretation (by default,
blank, tab and newline). Security note: this can be used for
hacking by the knowledgeable: say a user has no access to the
shell, but (a) can copy files, (b) can set $IFS, and (c) knows
that one of his scripts runs a program called pine. If he copies
/bin/sh to ./pi and then sets $IFS to “n”, the script will
run his shell called pi. Voilà, shell access. I’ve seen it done…

To set an environment variable, use the following method

PATH=/bin:/usr/ucb:. fredvar=value null= thingy=oodle

To read the value of a variable, prefix it with $; for example,

echo $thingy

will echo oodle. You can also enclose the variable name in braces ({}). For example,

tmp=/tmp/ps
ps -aux >${tmp}a

will direct the output of ps to /tmp/psa. If you missed out the braces the shell would look for a
variable called tmpa (and in this case, fail).

The following variables have special values within the shell:

$? The exit status (return code) of the last command executed, in
the form of a decimal string. The convention is for a zero exit
status to represent success.

$# The number of positional parameters (arguments).

$$ The process number of this shell, in decimal. Often used to
generate temporary files, since process numbers are unique. As
in ps -aux > /tmp/ps$$; … ; rm /tmp/ps$$.

$! The process number of the last process run in the background.

$- The current shell flags (such as -x and -v), set on shell
invocation or by set .

To pass all positional parameters, unevaluated, use $@. Positional parameters are $1 , $2, …

Shell scripts
A shell script is the UNIX equivalent of a DOS batch file. It is a text file that contains a list of shell
commands, and when a shell tries to execute a shell script – assuming the file’s flags allow the user to

UNIX System Administration

Rudolf Cardinal, August 1995 76

execute it – a new shell process is spawned to parse the script. Note that while an executable binary
only needs its execute flag set to be run, a shell script must also be readable by the shell.

There is a way to specify which shell should be used to execute a script.11 If the first character of the
script is a # – that is, the script starts with a comment – the script is run by /bin/csh. If the script
starts with “#! shellname”, the script is executed using the shell shellname. If it begins “#!
shellname arguments”, “shellname arguments” is executed but not the rest of the script,
which isn’t very useful.

The notation
. scriptname

allows a file to be executed as if it were being typed in – that is, no new shell process is created. If the
script changes directory, for example, the calling shell will have its working directory changed. The
script file need have no execute flags set, merely a read flag.

The sh command language in brief

Quoting Characters with special meaning (such as < > * ? | &) can be
“escaped” with \. Thus echo \? prints a single question mark. Single
quotes quote everything inside them (except for ’). Double quotes quote
everything inside them except for $ ` \ ” .

Command separation The semicolon (;) can be used to separate commands. The value returned by
a command list is that returned by the last simple command in the list.

for Syntax:
for name [in w1 w2 …]
do command-list
done

If the in clause is omitted, in $* is assumed (all the arguments to the
command, in order).

Creating files Aside from the touch command (see Other Handy Commands), you can
use

> file
to make sure file exists and is empty.

case Example:
case $# in

1) cat >>$1 ;;
2) cat >>$2 <$1 ;;
*) echo ’usage: append [from] to’ ;;

esac

The pattern before the) has the usual pattern syntax (* for any character(s)
including none, ? for any single characer, […] for any of the enclosed
characters).

11 I couldn’t find the formal definition of this system in the manual, so I have described it based on
experimentation.

UNIX System Administration

Rudolf Cardinal, August 1995 77

“Here documents” Example:
for i
do grep $i <<!

…
fred mh0123
bert mh0789
…

!
done

The shell takes the lines between <<! and ! as the standard input for grep .
The ! is arbitrary; you can use any string to start and end the “document”.
Parameters are substituted before the input is made available to grep.

test This isn’t actually in the shell. It performs a test and returns a zero exit
status for “true” and non-zero for “false”. There are several options – see
test(1) for them – but a few useful ones are

test s True if s is not a null string
test -f file True if file exists
test -r file True if file is readable
test -w file True if file is writable
test -d file True if file is a directory

An alternative syntax is [-f file] (and similar for the other tests).

while Syntax:
while command-list1

do command-list2

done

The value tested by while is the exit status of the last simple command
following while. If this is non-zero, the loop terminates.

shift Renames the positional parameters (arguments) $2, $3, … as $1, $2, …
and loses $1.

until The syntax is the same as a while loop, but with until instead of
while. The termination condition is reversed.

if Syntax:
if command-list
then command-list
else command-list
fi

The value tested is the exit status of the last simple command following if.
Of course, if statements may be nested.

Command grouping There are two ways to group commands:
{ command-list ; }

UNIX System Administration

Rudolf Cardinal, August 1995 78

and
(command-list)

The first form simply executes the commands; the second form executes
them as a separate process.

Debugging Using set -v causes the lines of the procedure to be printed as they are
executed: verbose mode. It may also be invoked by typing sh -v script.
This may be used in conjunction with the -n flag, which prevents execution
of subsequent commands (note that saying set -n at a terminal will lock
the terminal until an end-of-file is typed).

The command set -x will produce an execution trace: following
parameter substitution each command is printed as it is executed.

Both flags may be turned off using set -, and the current setting of the
shell flags is available as $-.

Substition Variable substitution has been discussed. It is possible to specify defaults
(${var-default}), assign the default to the variable if it wasn’t set
(${var=default}) and abort with a message if a variable isn’t set
(${var?message}). Command output substitution has the syntax:

‘command‘
So, for example, on the system hubble, the command

cd /sys/MIPS/‘/bin/hostname‘/config
will change to the directory /sys/MIPS/hubble/config.

And, or There are two conditional-execution tests:
command1 && command2

command1 || command2

The first executes command2 if command1 returns a zero value. The second
is the same, but for a non-zero value. Newlines may appear in the command
list instead of semicolons, to delimit commands.

Invoking shells, login scripts and restricted shells
The sh shell takes the following parameters:

– Indicates that this is a login shell. If $HOME/.profile exists, it is
executed. This is the normal sh login script; put your commands here.

-c string Commands are read from string.

-s Commands are read from standard input; output is written to descriptor
2. (This is the default.)

-i Shell is interactive. (This state is also assumed if the shell is attached to
a terminal, as told by gtty .) The terminate signal SIGTERM is ignored
(so kill 0 doesn’t kill an interactive shell); the interrupt signal
SIGINT is caught and ignored (so that wait is interruptible). In all
cases SIGQUIT is ignored.

UNIX System Administration

Rudolf Cardinal, August 1995 79

csh executes the .cshrc file in your home directory when it starts. Additionally, if this is a login
shell, it executes .login when it starts and .logout when is finishes.

The restricted shell rsh5 differs from sh5 in that the following are disallowed:
• changing directory
• setting $PATH
• specifying path or command names containing /
• redirecting output (> and >>)

These restrictions are enforced after .profile is interpreted. When a command is found to be a
shell procedure, rsh5 invokes sh5 to run it. Therefore shell scripts can be provided that have the full
power as the normal shell, providing a limited selection of commands to the user. In this case, you
would not want to give the user write and execute permissions to his directory. It is common to set up
a directory of restricted commands, usually /usr/rbin, to simplify the management of many
restricted users.

Two lines about csh
It’s got different names for its login/logout scripts. It’s more powerful than sh. It’s got a command
history and command-line editing. It’s got a command syntax like C. Look it up as csh(1).

UNIX System Administration

Rudolf Cardinal, August 1995 80

Accounting
System accounting can be performed for (1) user logins; (2) command usage; (3) printer usage. Most
of the commands that will be described rely on the presence of the optional acccounting software
subset.

Login accounting
The system maintains two login accounting files: /etc/utmp records active logins and
/usr/adm/wtmp maintains a login history. To generate a report of the login history, run

/etc/ac [-p] [-d] [people]

where

-p prints totals for individuals (otherwise the grand total you get isn’t much
use!)

-d gives a breakdown on a daily basis
people restricts the report to people

To clear the login history, truncate it:

cp /dev/null /usr/adm/wtmp

The system only maintains a login history if /usr/adm/wtmp exists (so remove it to stop login
accounting and create it using touch to restart login accounting).

The last command shows the last logins of users and teletypes. Its syntax is

last [-n] [name…] [tty…]

This gives login times and duration of the last n logins (default: all) for names and ttys. (Note that
last root console shows logins of root and onto the console, not just of root on the
console).

Command usage accounting
Normally, /etc/rc enables process accounting at system startup. The system records information on
each executed process in /usr/adm/acct. This can be disabled to save disk space. Process
accounting is suspended when free space < 2%, and resumes when free space > 4%.

To generate a report, use sa:

sa [options]

where

-s Merge accounting file into summary file /usr/adm/savacct when done.

(others) See sa(8).

To enable and disable process accounting, use /etc/accton. On its own, /etc/accton will
disable process accounting immediately. The normal line in the /etc/rc file to enable accounting is
given below: comment it out to disable accounting more permanently.

/etc/accton /usr/adm/acct; echo -n ’ accounting’ > /dev/console

UNIX System Administration

Rudolf Cardinal, August 1995 81

The lastcomm command shows the last commands executed in reverse order. Its syntax is

lastcomm [command] [user] [terminal]

For example, lastcomm print root ttyp3 gives details of all print commands executed by
root on ttyp3. For details of the output including the status flags it gives, see lastcomm(1).

Printer accounting
If a default accounting file is specified in the /etc/printcap file, all printer accouting information
is recorded to it. If this is the case, you generate a printer usage report using /etc/pac, or for a
specific printer using /etc/pac -Pprinter. To configure a useful accounting system, see
printcap(5) and pac(8) for full details.

UNIX System Administration

Rudolf Cardinal, August 1995 82

Error logs
Error logs are generated by the error logging daemon, /etc/elcsd, which is invoked by /etc/rc.
Hardware and system-related error packets and messages are logged to syserror.hostname,
where hostname is the name of the system. The elcsd daemon must be running whenever the system
is in multiuser mode.

The daemon is configured by /etc/elcsd.conf. Here is a typical configuration file:

#static char *sccsid = "@(#)elcsd.conf 1.3 (ULTRIX) 3/17/86";
#
elcsd - errlog configuration file
#
{ # delimiter DON’T remove or comment out!
1 # 1-local,2-logrem,4-remlog,5-remlog+priloglocal
 # errlog file size limit num. of blocks
/usr/adm/syserr # errlog dir. path
 # backup errlog dir. path
/ # single user errlog dir. path
/usr/adm/syserr # log remote hosts errlog dir. path
 # remote hostname to log to
} # delimiter DON’T remove or comment out!
hosts to log :S - separate file or :R - remotes file (together)
#remote1:S - (example) log errors from remote1 into separate
file

Entries are delimited by a newline and a blank line constitutes a null entry. The status line (containing
“1” above) can take the following values:

1 (default) Logs error packets (messages) locally
2 Logs error packets from a remote system or systems to the local machine
3 Logs local and remote packets locally
4 Logs error packets from the local system to a remote system
5 Logs error packets from the local system remotely and logs high priority

messages locally

The errorlog file size defines the maximum size of the errorlog file (what a surprise), in 512-byte
blocks. If you do not specify a maximum, you will be notified when the file system is 98% full. The
default errorlog directory is /usr/adm/syserr. If you change this, you must change the default for
uerf too (see below). If the daemon cannot write to the primary errorlog, it uses the backup errorlog.
If you run the daemon in single user mode (elcsd -s) it logs to the root directory by default (then
moves the logged messages to the multiuser log when the system goes multiuser) – you can redirect
this too. You can also specify a path to log remote hosts’ errorlogs. If you specify remote hosts to log,
append :S to make a separate log for a particular host, or :R to log to syserr.remotes. The
default is :S. Remote logging is accomplished via an Internet datagram socket.

The elcsd daemon logs general status and error messages to /usr/adm/elcsdlog in multiuser
mode; this file is purged whenever the daemon is started.

The program /etc/eli can be used to control the error logging daemon. It takes the following
options:

-d Disables error logging.
-e Enables error logging in multiuser mode.
-f Forces the subsequent option (no prompt is given). This is the only option

that can be used with another.
-h Help.
-i Initializes the kernel errorlog buffer.
-l Logs a one-line status message to the kernel errorlog buffer. Examples:

eli -f -l ”This is a test message”

UNIX System Administration

Rudolf Cardinal, August 1995 83

eli -f -l < myfile > /dev/null
(The second example logs a message up to and including the first newline
from myfile.)

-n Disables the logging of packets to disk by elcsd. High priority messages
continue to be logged to the console; others can be viewed by uerf -n
(see below) but otherwise are logged.

-q The console will not display the missed error messages that periodically
occur with a full errorlog buffer.

-r Reconfigure. Use this after changing /etc/elcsd.conf.
-s Enables error logging in single user mode.
-w Enables the missed error message to appear on the console every 15

minutes (the opposite of -q).

And to generate a report from the errorlog? Use /etc/uerf, the ULTRIX error report formatter. For
full syntax see uerf(8). For a very good summary of the options, type uerf -h. On its own, uerf
generates a report from the default input file; it is wise to redirect it (uerf > errorreport)
because it’s usually long. Once you have the textual output you can purge the error log.

UNIX System Administration

Rudolf Cardinal, August 1995 84

Mail
I will merely summarize the commands relevant to the standard UNIX mail system.

Command Purpose

ali (1mh) list mail aliases

aliases (5) aliases file for sendmail (/etc/aliases)

biff (1) be notified if mail arrives and who it is from

capsar (1) prepares documents not in ASCII format for transport in the mail system

from (1) identifies sender of mail

inc (1mh) incorporate new mail

mail (1) send or read mail

newaliases (1) rebuild the database for the mail aliases file

prmail (1) print out mail in the post office

uuencode,
uudecode (1c)

encode/decode a binary file for transmission via mail

xsend, xget,
enroll (1)

secret mail (available only if the Encryption layered product is installed)

• To send a message to bigbird, use “mail bigbird”. Finish your message with ^D.
• To retrieve your mail, type mail. Once in mail, type ? for a summary of commands. Useful

commands are n (go to and type next message) and d (delete message). Type q to quit.

Notes:

• Sending mail to remote superusers – see NFS.

UNIX System Administration

Rudolf Cardinal, August 1995 85

Other handy commands: things left over

which If I type a command, which file will be executed?

clear Clear screen

tty What terminal device am I connected to?

who Who’s on the system

whoami Your username

who am i Your username, the machine you’re logged on, from where and since
when

w Who’s logged on and what they’re doing

f Who’s logged on, from where, since when, their real name and their office
phone number. Same as finger with no parameters.

finger username Tells all about a user: real name, phone, home directory, where they’re
logged in from or their last login, on some systems whether they have mail
waiting and when they last checked their mail, and their plan: if they have
a file called “.plan” in their home directory, this is printed (and also the
first line of a file called “.project”, if it exists). Finger can also be used
remotely, as in finger user@host.

script Generate script of your terminal session

file Determine file type

mesg [n] [y] Allows or disallows talk/write messages. On its own, displays current
setting.

write user [ttyname] This command works for any user (although only the superuser can
override a mesg n command) and can be a two-way chat if two users
write to each other at the same time. Press ^D to terminate your message.
The full form of the command is useful when someone is logged on more
than once: a typical command would be write root ttyp0.

talk user[@host]
[ttyname]

This is an interactive split-screen chat program. Use talk to initiate and
to respond. Press ^L to redraw the screen and ^C to quit. Talk requires the
talkd server daemon to be running (usually loaded from inetd.conf,
see Networking).

touch file Updates the access date of file, creating it with zero length if it doesn’t
exist.

chsh [user] Change the login shell for user.

cmp file1 file2 Compares file1 and file2 and reports the differences.

date [parameters] On its own, date(1) queries the system date and time. There are many
options to retrieve the date in a certain format, and also to operate with
UCT/GMT instead of local time. If you are superuser, you may use date
to set the date and time. Do not change the date while the system is in

UNIX System Administration

Rudolf Cardinal, August 1995 86

multi-user mode. The parameters for setting date and time are
[yy[mm[dd]]]hhmm[.ss][-[-]tttt][z]

Of these, yy is the last two digits of the year and is optional (1970 is the
earliest, so “69” will mean 2069); mm is the month number; dd the day in
the month; hh is the hour (24-hour clock); mm the minute; ss the second.
The -[-]tttt specifies minutes west of Greenwich (a negative sign
means east) and z is a one-letter DST correction mode (n=none, u=USA,
a=Australian, w=Western Europe, m=middle Europe, e=Eastern Europe).

UNIX System Administration

Rudolf Cardinal, August 1995 87

Getting help: where to go from here

The online manual, man
There are two versions of the man command (/usr/bin/man and /usr/ucb/man, the latter
being the normal one) and the man command can be very complicated. Type “man man” for the
complete syntax (there are 15 screenfuls of information!). However, the following is all you really
need to know:

man -k keyword
or

apropos keyword

Prints a one-line summary of all commands whose name or
description includes keyword. Use this when you’re thinking
“I want a command that does this…”

man command Prints formatted pages of information about command. Press
space for the next page, q to quit.

man section command Looks up command in the specified section of the online
manual. Note: the online manual contains the Reference
Pages only. Its main sections are listed against RefPages in
the list of manuals below.

One convention is worth noting, and has been used in this guide. If you see a reference to stty(3),
for example, it refers to stty in section 3 of the Reference Pages. To look it up, type “man 3
stty”. As it happens, there is also a command stty(1); the section 1 command is an executable
program while the section 3 command is a C library function. If you just type “man stty”, you will
get the first entry (section 1).

About the text manuals
Only UNIX would need a comment on how to use its manuals! We have about seven feet of UNIX
manuals and finding information is not easy.

The first thing to find is the Master Index. Individual manuals do not have an index. The Index will
refer you to a manual and a page. Look up the manual from its abbreviation in the list below.
Secondly, note that there are often several manuals in one folder.

The ULTRIX manuals and their abbreviations

Abbreviation Manual Title
AdvInstall Advanced Installation Guide

Backup Guide to Backup and Restore

BasicInstall Basic Installation Guide

BGB The Big Gray Book: The Next Step with ULTRIX

BIND/Hes Guide to the BIND/Hesiod Service

Configfile Guide to Configuration File Maintenance

CrashRec Guide to System Crash Recovery

CursesX Guide to X/Open curses Screen Handling

DECrpc DECrpc Programming Guide

UNIX System Administration

Rudolf Cardinal, August 1995 88

DiskMaint Guide to Disk Maintenance

DMS Guide to Diskless Management Service

ErrorLogger Guide to the Error Logger

Ethernet Guide to Ethernet Communications Servers

Exercisers Guide to System Exercisers

InterNatl Guide to Developing International Software

Kerberos Guide to Kerberos

LocBrok Guide to the Location Broker

LAN Introduction to Networking and Distributed System Services

nawk Guide to the nawk Utility

Network_Prog Guide to Network Programming

NFS Guide to the Network File System

Primer The Little Gray Book: An ULTRIX Primter

RefPages Reference Pages Section 1: Commands
Reference Pages Section 2: System Calls
Reference Pages Section 3: Library Routines
Reference Pages Section 4: Special Files
Reference Pages Section 5: File Formats
Reference Pages Section 7: Macro Packages and Conventions
Reference Pages Section 8: Maintenance

RIS Guide to Remote Installation Services

sccs Guide to the Source Code Control System

setld Guide to Preparing Software for Distribution on ULTRIX Systems

Shutdown Guide to Shutdown and Startup

SysEnviron Guide to System Environment Setup

SysNetSetup Guide to System and Network Setup

TechSumm Technical Summary

TermEmul Guide to IBM Terminal Emulation for VAX Processors

uucp Guide to the uucp Utility

X/OpenTransport Guide to the X/Open Transport Interface

YP Guide to the Yellow Pages Service

The End

UNIX System Administration

Rudolf Cardinal, August 1995 89

