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Recent evidence indicates that networks including the amygdala

and prefrontal cortex provide a key interface between affect and

cognition. Converging evidence from rodents, humans, and non-

human primates indicates that interconnections between the

basolateral complex of the amygdala and the orbitofrontal cortex

are crucial to the formation and use of expectancies of

reinforcers in the guidance of goal-directed behavior.
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Abbreviations
BLA basolateral amygdala

CS conditioned stimulus

fMRI functional magnetic resonance imaging

OFC orbitofrontal cortex

Introduction
Traditionally, the amygdala has been assigned a crucial

role in emotional learning [1�,2�], whereas the prefrontal

cortex has been implicated in a variety of cognitive

functions involving the strategic use of information in

memory [3,4�]. Recent recognition of the importance of

emotion and the representation of value in memory and

decision has led to the investigation of amygdala–pre-

frontal interactions in a number of experimental contexts.

Evidence from studies of rodents, humans, and non-

human primates indicates that interactions between the

basolateral complex of the amygdala and the orbitofrontal

cortex are crucial for generating and using reinforcer

expectancies that guide goal-directed behavior. Here

we focus on that evidence.

Basolateral amygdala, orbitofrontal cortex
and expectancy
The utility of learning and memory lies not in reminis-

cence about the past, but in allowing us to act in antici-

pation of future events. Expectancy is a key product of

acquired knowledge and learning, which allows access to

representations of future events, and the use of those

representations to guide behavior effectively, efficiently,

and flexibly, on the basis of our current needs and values.

From the straightforward anticipation of events based on

everyday regularity (e.g. mealtimes) to the most complex

calculations (e.g. weather forecasting), adaptive decision

making requires the integration of information about the

properties and likelihood of imminent events with infor-

mation about our goals and current states. Recently,

conventional associative learning paradigms have been

adapted to allow systematic study of expectancy and

action in a range of species, including humans.

Most modern views of associative learning acknowledge

that both Pavlovian and instrumental conditioning proce-

dures often establish associations between stimulus or

response events and internal memorial representations

of the reinforcer [5]. In this context, ‘expectancy’ refers

to the associative activation of such reinforcer representa-

tions by the events that predict them, before the delivery

of the reinforcer itself. Expectancy can serve many func-

tions, including the control of conditioned behavior [5],

the establishment of new learning [6], and the modulation

of the efficacy of reinforcers [7]. In this review, we describe

evidence from such associative learning experiments,

which demonstrates the important involvement of baso-

lateral amygdala (BLA) and orbitofrontal cortex (OFC) in

the formation and use of expectancies of reinforcers.

Reinforcer devaluation

One of the more frequently used methods to demonstrate

expectancy in laboratory animals, which can also be used

with human participants in experimental settings, is the

reinforcer devaluation procedure [5]. In one rendition,

animals learn an instrumental discrimination in which

their actions yield different outcomes. If one action (pull-

ing a chain) produces one food reinforcer (grain pellets)

and another action (pressing a lever) produces a different

food reinforcer (sucrose), the representation of the

expected outcome can be isolated when the animal is

tested after changing the value of one of the foods. After

consumption of one food item (e.g. sucrose) to satiation,

animals are given the opportunity to perform both actions

in extinction (i.e. without delivery of either reinforcer). In

this test, they show substantial reductions in the fre-

quency of the action that predicts the devalued food,

relative to the frequency of the other action.

Variants of reinforcer devaluation tasks use different

methods of initial training, including instrumental and

Pavlovian conditioning procedures, and of reinforcer deva-

luation, for example, satiation and taste aversion–learning.

In an often-used example of reinforcer devaluation in

Current Opinion in Neurobiology 2004, 14:148–155 www.sciencedirect.com



Pavlovian conditioning, rats are first presented with pair-

ings of a conditioned stimulus of a light with a food

reinforcer in a standard conditioning chamber. As a con-

sequence of the formation of light–food associations, the

rats learn to approach the food cup while the light is on.

Next, in a devaluation phase conducted in the rats’ home

cages, the value of that same food is reduced by pairing it

with a toxin, so that the rats form an aversion to the flavor

of the food reinforcer and won’t consume it. Finally,

responding to the light alone is assessed in the condition-

ing chamber. If the learned food cup approach was

mediated by a light-evoked expectancy of the food rein-

forcer, then rats will substantially reduce food cup

approach during the light, relative to behavioral controls

that did not experience intervening devaluation of the

reinforcer.

In normal rats, such devaluation effects have been

observed repeatedly, using both Pavlovian and instru-

mental training procedures, and several taste aversion

and satiation devaluation procedures. However, rats with

excitotoxic lesions of BLA [8�,9�,10] or OFC [11] made

before training failed to show a devaluation effect. That

is, despite normal acquisition of conditioned responding

in the training phase and normal reduction of food

consumption in the devaluation phase, they failed to

show reduced responding in testing. Likewise, monkeys

with neurotoxic lesions of the amygdala [12] or lesions

that disconnect the BLA from the OFC [13] fail to show

devaluation effects in a procedure in which the incentive

value of a food item was reduced by satiation on that

food. Normal monkeys in those devaluation tests were

less likely to select objects that had been previously

paired with the devalued food, rather than some other

food. At the same time, the lesioned monkeys were just

as likely as controls to suppress consumption of the

devalued food itself.

Similar involvement of the BLA and the OFC has

also been reported in human brain imaging studies that

used devaluation procedures. Previous positron emission

tomography (PET) and functional magnetic resonance

imaging (fMRI) studies showed important roles for the

BLA and the OFC in the representation of the incentive

value of food-related stimuli. For example, in one such

study, hunger was found to modulate amygdala activation

by food stimuli but not by nonfood stimuli [14]. Likewise,

OFC activation by presentation of foods was related to

hunger [15] and pleasantness [16], and satiation by a food

item reduced OFC activation by that specific food [17]. In

a recent fMRI study using Pavlovian conditioning and

selective satiation procedures [18��], two visual condi-

tioned stimuli (CSs) paired with two different food odors

activated both the amygdala and the OFC in training. But

after participants consumed one food to satiation, both

the BLA and the OFC responded less to the devalued

cues than to nondevalued cues for food items.

Neural coding in discrimination learning

Tasks such as devaluation are used in behavioral studies

to reveal the role of associatively activated representa-

tions of reinforcers. But it is assumed that these repre-

sentations are active regardless of the invocation of

special behavioral procedures to detect them. For exam-

ple, when animals perform a discrimination by selecting

between two actions that lead to different outcomes, the

activation of representation of the outcome is used to

guide behavior in addition to any stimulus–response

associations. Recent studies of neural activity in rats,

monkeys and humans in discrimination tasks provide

another window through which to view learned expec-

tancies in associative learning.

In go/no-go discriminations in which different odor cues

predicted the delivery of sucrose or an aversive quinine

solution [19–21], neurons in both the BLA and the OFC

of rats responded selectively to the delivery of those

reinforcers and, after learning, to the odor cues that

predicted those reinforcers. Importantly, reinforcer-

selective neurons also responded appropriately during

a brief empty delay interval after correct and incorrect

go responses were made as rats awaited the delivery of

the sucrose or quinine reinforcer. Reversal of the rein-

forcer contingencies altered the coding properties of

these cue- and response-activated neurons, demonstrat-

ing that their activity indeed reflected the value of the

predicted outcomes. This anticipatory reinforcer-appro-

priate neural activity, observed in monkeys as well as in

rats [22–25], has the requisite features for encoding

learned expectancies of reinforcing events. Reinfor-

cer-selective neurons that were activated by the odor

cues could be said to represent stimulus–reinforcer

expectancies, and reinforcer-selective neurons that

were activated by responses in the delay intervals could

be said to represent response–reinforcer expectancies.

Basolateral amygdala and orbitofrontal cortex

specializations in coding and function

Although basic aspects of encoding in the tasks just

described were similar for BLA and OFC neurons in

many respects, more subtle differences are notable. For

example, although neurons in BLA coded odor–outcome

relations early in training, OFC neurons did not code

these relations until after a behavioral discrimination

criterion had been met. Furthermore, when the reinfor-

cement contingencies were reversed, expectancy-coding

neurons in the BLA were more likely to reverse their

reinforcer-selectivity than OFC neurons, which were

more likely to simply lose their prior selectivity while

previously non-selective neurons developed correlates in

the reversal phase [20,21].

In addition to such differences in correlates observed when

recording in each structure in the same task in the intact

animal, further insights have come from companion
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research using experimental manipulation of one struc-

ture while recording in the other [26��,27��]. This

research shows that interactions between BLA and

OFC play an important part in the development of

expectancy coding, and reveals additional differences

between BLA and OFC function in odor discrimination

tasks. Rats with lesions in BLA or OFC (placed ipsilat-

eral to the recording site) showed several differences in

neural coding in the other region compared to that of rats

with sham lesions. For example, although BLA lesions

had little effect on the proportion of OFC neurons that

reversed their selectivity after a reversal of reinforce-

ment contingencies, OFC lesions substantially reduced

the proportion of BLA neurons that showed such rever-

sal, consistent with the frequent observation that the

OFC is crucial for reversal learning [28–31]. Further-

more, the proportion of OFC neurons that came to code

stimulus-reinforcer expectancies, that is, which showed

reinforcer-specific activity in the presence of the odor

cues, was lower in rats with BLA lesions than in intact

rats. By contrast, OFC lesions had little effect on the

proportion of such stimulus-reinforcer expectancy neu-

rons in BLA. The two lesions had opposite effects on

neurons that coded response-reinforcer expectancies;

although BLA lesions had no effect on the proportion

of reinforcer-selective OFC neurons that responded in

the delay interval between responding and reinforcer

delivery, rats with OFC lesions showed fewer such

response-reinforcer expectancy neurons in BLA than

controls. Thus, exchange of information between

BLA and OFC is necessary for normal coding in each

region: BLA is crucial to the representation of stimulus–

reinforcer expectancies in OFC, and OFC is needed for

the representation of response–reinforcer expectancies

in BLA.

These last observations are at least superficially compar-

able to the view, generated from recent lesion studies in

devaluation tasks, that BLA is especially important for the

formation of cue–reinforcer expectancies, and OFC for

generating responses on the basis of those expectancies

[32��]. That view is supported by results obtained when

lesions are made at different phases in devaluation pro-

tocols. In contrast to the detrimental effect of BLA

damage before all phases of such experiments, when rats

were given their initial light–food training before surgery

BLA lesions had no effect on subsequent sensitivity of

conditioned responding to devaluation. This result sug-

gests that the BLA is crucial for processes by which

initially neutral events (CSs) gain associative access to

the incentive value of reinforcers, but not to the use of

those expectancies in guiding behavior. By contrast, OFC

lesions made either after initial training [32��] or after the

devaluation phase [33] eliminated the devaluation effect,

just as lesions made before all training. Thus, unlike the

BLA, the OFC is crucial to the use of expectancy informa-

tion to guide behavior. Similar conclusions can be derived

from recent human imaging studies [34�,35��,36��]. In one

study [34�], amygdala activation was related to presenta-

tion of visual signals for pleasant odors early in training,

but this response habituated over training, whereas med-

ial OFC activity associated with those visual cues was

maintained. Another study [35��] found activation of

some subregions of OFC by words that signified high-

incentive menu items only when participants had to

choose among them, but activation of amygdala and other

OFC subregions by these words regardless of whether or

not a choice response was required.

These observations might also help to account for

reported effects of BLA and OFC ablations on reversal

learning. Although the effects of BLA lesions on reversal

learning are mixed [31,37], damage to the OFC has been

found to impair reversal learning broadly across species

and tasks [28,30,31,38–40]. Recent behavioral data sug-

gest that outcome expectancies are not lost in reversal

learning, and successful reversal learning instead reflects

the acquisition of some competing response or inhibitory

state [41]. If the OFC is crucial for guiding action on the

basis of outcome expectancies, then the activation of

competing expectancies (mediated by BLA encoding that

survives OFC lesions) throughout reversal training, lead-

ing to impaired reversal performance, might be especially

evident in subjects with OFC damage. Consistent with

this claim, animals with OFC damage show persistent

deficits in successive reversals, even when returned to

their original discrimination tasks [31]. By contrast, no

such competing expectancies would be formed by ani-

mals with BLA damage. These animals would be unim-

paired in reversal learning if another equally effective

learning strategy, for example one based on simple sti-

mulus–response learning, was available to them. Vari-

ability in the effectiveness of BLA lesions on reversal

performance might reflect variation in the effectiveness of

these alternative strategies.

Content of expectancies in basolateral amygdala and

orbitofrontal cortex

The experiments with rats and monkeys cited in the

previous section demonstrated neural coding of both

aversive and appetitive events, and expectancies for those

events. Recent human imaging studies have also shown

such differential coding in OFC, for both stimuli with

intrinsic positive or negative value (pleasant/unpleasant

odors or tastes, [34�,42,43�,44–46]; but see [47]) and more

abstract events (monetary gains and losses, [48,49�]).
Medial regions of the OFC responded more to positive

events and lateral OFC responded more to negative

events. Most relevant to this review, this value-depen-

dent regional OFC activation was observed to come

under the associative control by predictive visual CSs

paired with affectively significant stimuli odors and tastes

[34�,50]. By contrast, in these same studies there was little

evidence for coding of stimulus value in the amygdala;
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instead, amygdala activation was found to vary with

stimulus intensity, a variable which did not affect OFC

activation (but see [35��]). However, region-of-interest

analyses like these can only reveal coding differences that

are spatially segregated; notably, in rat and monkey,

individual neurons that selectively respond to appetitive

and aversive stimuli appear intermixed. Thus, the claim

that the human amygdala fails to encode stimulus value

could be premature [42,43�,44].

In all of the work reviewed here, the expectancies

involved were of motivationally significant events, with

substantial reinforcement or incentive value. Although it

is well known that animals can also form associations

between relatively neutral events, there has been little

investigation of amygdala or OFC involvement in

learned expectancies for such events. However, consis-

tent with the view that the BLA is primarily concerned

with representation of emotional/incentive value, the

acquisition and use of expectancies of relatively neutral

events was unaffected by BLA lesions in two recent

studies [37,51].

Given the frequent claim from both human [34�,42,43�,
44–46] and animal [23,25,52] research that the OFC

does not represent sensory features of events indepen-

dent of their incentive properties, the OFC’s role might

be similarly confined to orchestrating behavior on the

basis of expectancies of emotionally significant events.

Recent human imaging studies support this claim [53].

On the other hand, the anatomical relations among the

OFC and sensory regions (discussed later) are consistent

with an important role for the OFC’s use of information

from a variety of senses to guide behavior.

Orbitofrontal cortex, expectancy and surprise

A key notion common to many contemporary theories of

associative learning is that the ability of events to enter

into associations depends not only on their intrinsic

properties (such as salience or incentive value) but also

on how well the occurrence of those events is predicted.

For example, in the Rescorla-Wagner model [7], the

amount of learning that occurs on a conditioning trial is

a function of the discrepancy between the intrinsic value

of the reinforcer and the extent to which that value is

expected on the basis of the cues present on that trial.

Other theorists have argued that this discrepancy can also

determine the allocation of attention to the cues them-

selves [54,55]. Neural correlates of this ‘prediction error’

have been observed in a variety of brain regions (reviewed

in [56]), including the OFC [55,57–61]. In these studies,

OFC activation by reinforcers was greater when those

events were presented under conditions of uncertainty

than when they were well-predicted by context or explicit

cues. The relation among error detection in OFC, atten-

tion, reinforcement and functions of expectancy reviewed

here deserves further investigation.

Anatomy and function of the amygdala and
prefrontal cortex
The research we have surveyed provides functional sup-

port for evolving neuroanatomical conceptualizations of

both the amygdala and the prefrontal cortex. On embry-

ological, neurochemical, connectional, and functional

grounds, many anatomists have argued that the classical

amygdala complex forms neither a functionally nor a

structurally coherent entity, and that each of its several

major cell groups is better described in relation to dif-

ferent adjacent brain systems [62,63]. Arguments for the

concept of the ‘extended amygdala’ were based on such

considerations [63]. On somewhat different grounds,

Swanson and Petrovich [62] suggested that the amygdala

comprises components of four functional systems. Nota-

bly, in the context of the research reviewed here, they

characterized the lateral and basolateral amygdala as an

extension of the deep regions of frontal and temporal

cortex. Consistent with this view, the data on BLA and

OFC have revealed links between functions of this

circuit, which are not shared with other amygdalar

regions. Note, for example, that the lesions of central

nucleus of the amygdala entirely spare devaluation per-

formance [10].

Likewise, prefrontal cortex is now widely described as

comprising multiple, dissociable systems. Some investi-

gators have distinguished between a ventral processing

stream, conveying emotional arousal information from the

amygdala to ventral prefrontal cortex, and a dorsal stream

that relays attentional information from posterior parietal

cortex to dorsal prefrontal cortex [64]. Similarly, three

major anatomical divisions, medial, dorsolateral, and orbi-

tofrontal regions are usually defined [4�,38,65�]. Homo-

logies of these anatomical regions across primates and

rodents have been identified; crucially, a homolog of

primate orbitofrontal cortex (OFC) in rats shares patterns

of connections with many other brain regions, including

its innervation from medio-dorsal thalamus (which tradi-

tionally defined cortical boundaries). Most importantly,

the comparability of OFC function across rodent, human,

and non-human primate studies reviewed here adds

strong support for homology.

The generality of these findings across rodent and pri-

mate species might reflect specific anatomical features of

the network that includes the BLA and the OFC, espe-

cially in the context of representation and association (see

[4�,38,65�] for reviews). First, BLA and OFC each receive

highly-processed sensory information from several

higher-level sensory cortical areas. Second, in the BLA,

these sensory projections overlap with projections from

the OFC, and in the OFC, they overlap with projections

from the BLA. Most crucially, the OFC and the BLA are

linked directly by strong bidirectional connections, and

indirectly through thalamic connections [66], providing

significant substrates for information exchange between
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these two regions. Finally, this network has strong con-

nections with several brain regions that are also impli-

cated in reward processing (e.g. the striatum [57,67]) and

decision (e.g. dorsolateral prefrontal cortex, [68]).

Conclusions and additional reflections
We have reviewed studies of amygdala–prefrontal invol-

vement in reinforcer expectancies conducted across a

range of species. Although most of this research relied

on a few simple behavioral discrimination and reinforcer

devaluation tasks to assess expectancy, the behavioral

literature is rich with converging operations and tasks that

can be used to define that construct. To date, the role of

the BLA and the OFC in these tasks has not been

explored in much depth. However, it is notable that

BLA lesions have also been found to impair performance

in two of these procedures, the differential-outcome-

expectancy task and reinforcer-specific Pavlovian-instru-

mental transfer [51].

Although the current review has concentrated on a single

aspect of OFC function, it is notable that it informs more

general considerations of prefrontal function. Recent

accounts of orbitofrontal function fall in three broad

categories, those that emphasize the OFC’s role in

representing the affective value of goals and other events

[11,69,70�,71], those that stress its role in response selec-

tion [35��,72], and those that emphasize its role in

response inhibition [40,72]. The research surveyed here

supports each of these broad claims, indicating that

interaction between amygdala and OFC is important

for establishing expectancies of the incentive value of

upcoming events in both regions, and that OFC, to a

greater extent than amygdala, is crucial to the guidance

of action based on those expectancies, especially for

the case of suppressing responses based on competing,

but less desirable expected consequences. Because

selection among responses might involve estimates of

expected value of the consequences of each response,

response selection might frequently be intertwined

with expectancy.

The body of research reviewed here has several salutary

aspects that are worth special note. First, it broadens our

view of the role of the amygdala in affect and emotion.

Although much of the classic literature stresses the role of

the amygdala in negative affect (e.g. fear, anxiety and

disgust) and defensive learning, it is striking that most of

the studies reviewed here used appetitive, food-rein-

forced learning tasks, supporting the view that the amyg-

dala is at least as importantly involved in positive affect

and appetitive learning [73,74].

Second, the linkage of amygdala and prefrontal function

and structure further encourages the experimental and

theoretical integration of emotional and cognitive pro-

cesses and shows that the use of comparable tasks and

hypotheses across rodent, human, and nonhuman primate

models can provide a fairly unified approach to these

issues. Each of these experimental preparations promises

different contributions to the interdisciplinary study of

cognition, affect, and behavior, but linked to a common

theoretical perspective and a well-defined empirical

approach.

Finally, this research might eventually provide a better

foundation for understanding human psychopathology

involving the amygdala and OFC. Patients with damage

to either amygdala or OFC show a range of abnormalities

of cognition, affect, and behavior [38,75–78]. In many

instances, when exposed to training procedures like those

reviewed here, such patients show deficits comparable to

those observed in animal lesion studies, albeit with more

damage that is less well-defined. Likewise, neurologically

intact individuals, diagnosed with certain disorders of

emotion and decision, have been observed to display

similar behavioral deficits, as well as atypical neural

activity in the brain systems reviewed herein [29,79].

Irregularities in the formation of accurate representations

of the expected value of the consequences of both envir-

onmental events and our own actions, and the use of those

representations in selecting appropriate and adaptive re-

sponses could underlie a range of disorders of decision-

making, emotional function, social behavior, and person-

ality in general.
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