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OVERVIEW 

Analysis of variance (ANOVA) was initially developed by R. A. Fisher, beginning 

around 1918, and had early applications in agriculture. It is now a dominant and 

powerful statistical technique used extensively in psychology. In ANOVA, a 

dependent variable is predicted by a mathematical model comprising one or more 

predictor variables, which may be categorical (factors) or quantitative and continuous 

(covariates; regressors). The model’s best prediction is calculated by minimizing the 

sum of the squared residuals (errors, or deviations from the model’s prediction). 

Having done this, the proportion of variance in the dependent variable accounted for 

by each predictor is assessed statistically, testing the null hypotheses that the mean of 

the dependent variable does not vary with the predictor(s); good predictors account 

for a large proportion of the variance, compared to unpredicted (error) variance, and 

poor predictors account for a small proportion. ANOVA allows the effects of 

predictors to be assessed in isolation, but also allows the assessment of interactions 

between predictors (effects of one predictor that depend on the values of other 

predictors). 

ASSUMPTIONS 

ANOVA assumes (1) that for each condition represented by a combination of 

predictor values, the dependent variable is normally distributed about the mean for 

that condition, or equivalently that error is normally distributed in each condition; (2) 

that the variance is the same in all such conditions, and the same as the residual 

variance (known as the homogeneity of variance assumption); (3) that the model 

accounts for all systematic influences on the data, such that the residual variability 

represents random error and all errors or observations in each condition are 

independent of each other. Checking these assumptions involves consideration of the 

experimental design, exploratory data analysis prior to ANOVA, and analysis of the 

residuals afterwards. Sometimes, the suitability of data for ANOVA may be improved 

by appropriate transformations prior to analysis. Additional homogeneity-of-variance 

assumptions apply to ANOVA involving within-subjects factors, discussed below. 
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LOGIC OF ONE-WAY ANOVA 

The basic logic of ANOVA is simply illustrated using a single categorical predictor 

(single-factor or one-way ANOVA). Suppose A is a factor that can take one of k 

values (representing, for example, k different experimental treatments), and n values 

of the dependent variable Y have been sampled for each of the conditions A1…Ak 

(giving nk observations in total). The null hypothesis is that the dependent variable Y 

has the same mean for each of A1…Ak, i.e. that A has no effect upon the mean of Y. 

ANOVA calculates a mean square for the predictor (MSA) and an error mean square 

(MSerror) and then compares them. 

Mean Square For The Predictor 

If the null hypothesis is true, then the k samples have been drawn from the same 

population, and by the Central Limit Theorem, the variance of the k sample means is 

an estimator of ne /2σ , where 2
eσ  is the population (and error) variance, so n times the 

variance of the sample means estimates 2
eσ . However, if the null hypothesis is false, 

the sample means have come from populations with different means, and n times the 

variance of the k sample means will exceed this value. The sum of squared deviations 

(abbreviated to sum of squares; SS) of each condition’s mean from the grand mean 

(Y ) is calculated for the predictor, summing across all observations (in this example, 
2 2

A
1 1 1

SS
i iA A

i k j n i k

Y Y n Y Y
= = =

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦∑ ∑ ∑
K K K

), and divided by the degrees of freedom 

(df) for the predictor (in this example, 1A −= kdf ) to give the mean square (MS) for 

the predictor ( AAA /SSMS df= ). If the null hypothesis is true, then the expected value 

of this number, E(MSA), is the error variance 2
eσ . If the null hypothesis is false, then 

the expected mean square will exceed 2
eσ , as it will contain contributions from the 

non-zero effect that A is having on Y. 

Mean Square For Error 

Whether or not the null hypothesis is true, the sample variances 22
1 kAA ss K  estimate the 

corresponding population variances 22
1 kAA σσ K , and by the homogeneity of variance 

assumption, also estimate the error variance 2
eσ . An estimate of 2

eσ  is therefore 

obtainable from the sample variances 22
1 kAA ss K . The sum of squared deviations of 

each observation from its group mean—that is, the summed squared residual 
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deviations after the prediction has been made—is calculated (in this example, 
2

error ,
1 1

SS
ii j A

i k j n

Y Y
= =

⎡ ⎤= −⎣ ⎦∑ ∑
K K

) and divided by the error degrees of freedom (in this 

example, error total A [ 1] [ 1] [ 1]df df df nk k k n= − = − − − = − ) to give 

errorerrorerror /SSMS df= . Whether the null hypothesis is true or not, 2
error(MS ) eE σ= . 

The graphical meaning of these SS terms is shown in Figure 1a. 

F Test 

Comparison of MSA to MSerror thus allows assessment of the null hypothesis. The 

ratio A errorMS / MSF =  is assessed using an F test with (dfA, dferror) degrees of 

freedom. From the observed value of F, a p value may be calculated (the probability 

of obtaining an F this large or greater, given the null hypothesis). In conventional 

approaches, a sufficiently large F and small p leads to the rejection of the null 

hypothesis. 

INTERACTIONS, MAIN EFFECTS, AND SIMPLE EFFECTS 

When multiple factors are used in analysis, a key feature of ANOVA is its ability to 

test for interactions between factors, meaning effects of one factor that depend on the 

value (level) of other factor(s). The terminology will be illustrated in the abstract, 

temporarily ignoring important statistical caveats such as homogeneity of variance. 

Suppose the maximum speeds of many scrap cars are analysed using two factors: E 

(levels: E0 engine broken, E1 engine intact) and F (levels: F0 no fuel, F1 fuel present). 

There will be a main effect of Engine: on average, ignoring everything else, E1 cars go 

faster than E0 cars. Similarly, there will be a main effect of Fuel: ignoring everything 

else, cars go faster with fuel than without. Since speeds will be high in the E1F1 

condition and very low otherwise, there will also be an interaction, meaning that the 

effect of Engine depends on the level of the Fuel factor, and vice versa (the effect of a 

working engine depends on whether there is fuel; the effect of fuel depends on 

whether there is a working engine). One can also speak of simple effects: for example, 

the simple effect of Fuel at the E1 level is large (fuel makes intact cars go) whereas 

the simple effect of Fuel factor at the E0 level is small (fuel makes no difference to 

broken cars). Likewise, the Engine factor will have a large simple effect at F1 but a 

small simple effect at F0. Main effects may be irrelevant in the presence of an 

interaction, since they gloss over known interrelationships between the factors. 
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A two-factor ANOVA is illustrated in Figure 1b. ANOVA results are 

conventionally reported in the form shown in Table 1. 

POST-HOC ANALYSIS OF INTERACTIONS AND MULTILEVEL FACTORS 

Effects of interest in an ANOVA that are found to be significant are frequently 

analysed further. Interactions may be followed up by analysing their component parts, 

for example by restricting the analysis to a subset of the data (such as by examining 

simple effects, or simpler component interactions within a complex interaction). 

Likewise, significant main effects of interest may require further analysis. For 

example, if a three-level factor A is found to have an effect, then the null hypothesis 

1 2 3A A Aµ µ µ= =  is rejected, but the experimenter may still have an interest in which of 

1 2 3A A Aµ µ µ≠ = , 
1 2 3A A Aµ µ µ= ≠ , and 

1 2 3A A Aµ µ µ≠ ≠  is the case. A range of post hoc 

tests is available for this purpose. The most important feature of such tests is that they 

involve the potential for multiple comparisons, and thus have the potential to inflate 

the Type I error rate, particularly as the number of levels of the factor increases. 

Appropriate tests control the maximum Type I error rate for a whole ‘family’ of 

comparisons. 

ANOVA AS A GENERAL LINEAR MODEL (GLM) 

More generally, each observed value of Y can be modelled as a sum of predictors 

each multiplied by a regression coefficient (b), plus error not accounted for by the 

prediction (e): 
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In matrix notation, this may be written: 

= +Y Xb e  

Here, Y is a matrix containing values of the dependent variable. X is the design 

matrix, containing columns for p predictors plus a column of ones to represent the 

additional predictor of the ‘overall mean’ of Y. Each row of X encodes the predictors 

and which levels of those predictors (for categorical predictors), or values of the 

predictors (for continuous predictors), apply to a given value of Y. Appropriate choice 
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of a design matrix allows arbitrary designs including factors with multiple levels, 

combinations of categorical and continuous predictors, and interactions to be encoded. 

The matrix b contains coefficients (in this example, b0 is the value of the overall Y 

mean, Y ), and e contains errors. This equation may be solved for b so as to minimize 

the summed squared residuals ( 2e∑ ). Having done so, 2
error

1

SS i
i n

e
=

= ∑
K

, 

total Y
1

SS SS ( )i
i n

y Y
=

= = −∑
K

, and model total errorSS SS SS= − . The proportion of the 

variance in Y accounted for by the overall model is given by 2
model totalSS /SSR = . The 

contribution of any given predictor may be assessed by comparing the predictive 

value of a ‘full’ model, containing all predictors, to a ‘reduced’ model containing all 

predictors except the one of interest: 

( ) ( ) ( )model[full] model[reduced] model[full] model[reduced]
model[full] model[reduced] error[full]

error[full] error[full]

SS SS
,

SS
df df

F df df df
df

− ÷ −
− =

÷
 

or, to make clear the equivalence to the logic discussed above, 

( ) predictor predictor predictor
predictor error[full]

error[full] error[full] error[full]

SS MS
,

SS MS
df

F df df
df

÷
= =

÷
 

Effect sizes for individual predictors may be calculated in terms of R2 (the 

proportion of variance in Y explained) or in terms of b (the change in Y for a given 

change in the predictor). 

Viewing ANOVA in terms of a GLM makes its relationship to other well-known 

analytical techniques clear. For example, ANOVA with a single two-level factor is 

equivalent to a two-group t test; ANOVA with a single continuous predictor is 

equivalent to linear regression (Figure 1c); and so on. GLMs also subsume techniques 

such as analysis of covariance (ANCOVA) and multiple and polynomial regression, 

and can be extended to multiple dependent variables (multivariate ANOVA or 

MANOVA). General linear models may also be extended to dependent variables with 

non-normal (e.g. binomial) distributions via the generalized linear model. 

CONTRASTS AND TREND ANALYSIS 

GLMs may also be used to perform contrasts to ask specific questions of the data. In 

this technique, a linear combination of weighted means is created that will have a 
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value of zero under a given null hypothesis. For example, if a factor has 7 levels, one 

for each day of the week, then the linear contrast 

Mon Tue Wed Thu Fri Sat Sun0.2 0.2 0.2 0.2 0.2 0.5 0.5L µ µ µ µ µ µ µ= + + + + − −  

(where µday indicates the day mean) may be used as a test of the null hypothesis that 

the dependent variable is equal on weekdays and weekends. In a GLM, these weights 

are encoded in a contrast matrix L. After solving = +Y Xb e , the contrast is 

calculated as L = Lb  and assessed statistically to test the null hypothesis 0L = . 

 Trend analysis involves the use of contrasts to ask questions about categorical 

predictors (factors) that may be treated quantitatively. For example, if subjects’ 

reaction times are tested with visual stimuli of length 9 cm, 11 cm, 13 cm, and 15 cm, 

then it may be valid to treat the lengths as categories (do reaction times to the lengths 

differ?) and quantitatively (is there a linear or quadratic component to the relationship 

between reaction time and stimulus length?). 

CORRELATIONS BETWEEN PREDICTORS AND UNBALANCED DESIGNS 

When an ANOVA design contains multiple predictors that are uncorrelated, 

assessment of their effects is relatively easy. However, it may be that predictors are 

themselves correlated. This may because the predictors are correlated in the real 

world (for example, if age and blood pressure are used to predict some dependent 

variable, and blood pressure tends to rise with age). However, it may also occur if 

there are different sample sizes for different combinations of predictors. For example, 

if there are two factors, A (levels A1 and A2) and B (levels B1 and B2), then a 

balanced design would have the same number of observations of the dependent 

variable for each of the combinations A1B1, A1B2, A2B1, A2B2. If these numbers are 

unequal, the design is unbalanced, and this causes correlation between A and B. This 

problem also occurs in incomplete factorial designs, in which the dependent variable 

is not measured for all combinations of factors. 

 Whatever the reason for correlation between predictors, this causes a problem of 

interpreting their effects upon the dependent variable (Figure 2). There are various 

approaches to this problem; the best approach depends upon the class of hypothesis 

preferred on theoretical grounds (do some predictors take precedence over others?) 

and on whether the design is unbalanced or incomplete. 
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FIXED AND RANDOM EFFECTS 

Up to this point, it has been assumed that factors have been fixed effects, meaning that 

the levels of the factor exhaust the population of interest and represent all possible 

values the experimenters would want to generalize their results to analytically; the 

sampling fraction (number of levels used ÷ number of levels in the population of 

interest) is 1. A simple example is sex: having studied male and female humans, all 

possible sexes have been studied. Experimental factors are usually fixed effects. It is 

also possible to consider random effects, in which the levels in the analysis are only a 

small, randomly selected sample from an infinite population of possible levels 

(sampling fraction = 0). For example, if an agronomist wanted to study the effect of 

fertilizers on wheat growth, it might be impractical to study all known varieties of 

wheat, so four might be selected at random to be representative of wheat in general. 

Wheat variety would then represent a random factor. 

The most common random effect in psychology is that of subjects. When subjects 

are selected for an experiment, they are typically selected at random in the expectation 

that they are representative of a wider population. Thus, in psychology, discussion of 

fixed and random effects overlaps with consideration of between-subjects and within-

subjects designs, discussed below. An ANOVA model incorporating both fixed and 

random effects is called a mixed-effects model. 

 With random effects, not only is the dependent variable a random variable as usual, 

but so is a predictor, and this modifies the analysis. It does not affect the partitioning 

of SS, but it affects the E(MS) values, and thus the choice of error terms on which F 

ratios are based. Regardless of the model, testing an effect in an ANOVA requires 

comparison of the MS for the effect with the MS for an error term where 

effect error(MS ) (MS )E E=  if the effect size is zero, and effect error(MS ) (MS )E E>  if the 

effect size is non-zero. In fixed-effects models, the error term is the ‘overall’ residual 

unaccounted for by the full model; in random-effects models, this is not always the 

case, and sometimes the calculation of an error term is computationally complex. 

WITHIN-SUBJECT AND BETWEEN-SUBJECT PREDICTORS, AND MORE 

COMPLEX DESIGNS 

Psychological experiments may be conducted with between-subjects factors, in which 

each subject is measured at just one level of the factor, or within-subjects factors, in 
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which each subject is measured at every level of the factor, or a mixture. Within-

subjects designs (also known as repeated measures designs) allow considerable 

power, since an individual at one time is likely to be similar to the same individual at 

other times, reducing variability. The main disadvantage is the sensitivity of within-

subjects designs to order effects. 

 In a simple within-subjects design, a group of subjects might be measured on three 

doses of a drug each (within-subjects factor: D). It would be necessary to 

counterbalance the testing order of the dose to avoid order effects such as 

improvement due to practice, or decline due to fatigue, or lingering or learned effects 

of a previous dose. Having done so, then variability between observations may be due 

to differences between subjects (S), or to differences between observations within one 

subject; this latter variability may be due to D, or intra-subject error variability (which 

might also include variability due to subjects’ responding differently to the different 

doses, written D × S). 

For a design involving both between- and within-subjects factors, suppose old 

subjects and young subjects are tested on three doses of a drug each. Age (A) is a 

between-subjects factor and dose (D) is a within-subjects factor. In this example, 

variability between subjects may be due to A, or to differences between subjects 

within age groups, often written S/A (‘subjects within A’) and thought of as the 

between-subjects error. Variability of observations within individual subjects may be 

due to D, or to a D × A interaction, or within-subject error that includes the possibility 

of subjects responding differently to the different doses (which, since subjects can 

only be measured within an age group, is written D × S/A). This partitioning of total 

variability may be accomplished for SS and df and analysed accordingly, with the 

caveat that as subject (S) represents a random factor, calculation of an appropriate 

error term may sometimes be complex, as described above. 

 Within-subjects designs also carry an additional assumption: that of sphericity, or 

homogeneity of variance of difference scores. For example, if subjects are measured 

at three levels of a within-subjects factor U, then three sets of difference scores can be 

calculated: 1 2( )U U− , 1 3( )U U− , and 2 3( )U U− . Sphericity is the assumption that the 

variances of these three difference scores are the same. Violations of this assumption 

can inflate the Type I error rate. Violations may be tested for directly using Mauchly’s 

test, but this may be over-conservative. Approaches to this problem include (1) using 
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an F test as usual but correcting the df to allow for the extent of violation, such as 

with the Huynh–Feldt or Greenhouse–Geisser corrections; (2) transformation of the 

data to improve the fit to the assumptions, if this is possible and meaningful; (3) using 

MANOVA, which does not require sphericity; (4) testing planned contrasts of 

interest, which have 1 df each and therefore cannot violate the assumption. 

 ANOVA designs may have arbitrary numbers of between- and within-subjects 

factors. In these designs, ‘Subject’ defines a type of relatedness between observations. 

More complex designs, involving multiple levels of ‘relatedness’, are possible and 

indeed commonly reflect real-world experiments. For example, suppose 

schoolchildren (S) each perform four tests of four levels of difficulty (factor D). These 

children are taught in class groups (G), and sets of groups are taught according to 

different teaching methods (T). In this example, D is said to be crossed with S (since 

all subjects perform in all difficulty conditions), but S is nested within G (any given 

subject is only a member of one group), and groups are nested within T. This model 

may be written DS/G/T, and is an example of a hierarchical design involving two 

types of ‘relatedness’. Such designs allow the analytical model to reflect correlations 

in the real world—such as observations that come from the same subject being likely 

to be more similar to each other than to randomly selected observations, or 

observations that come from different subjects who are in the same group being likely 

to be more similar to each other than to randomly selected observations. Ensuring a 

correct design is part of satisfying the assumption that the ANOVA model accounts 

for all systematic influences on the data. 
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Table 1. ANOVA of fictional data (shown with scale removed in Figure 1b), showing 

conventional table style as might be produced by statistical software. In general, a 

factor with k levels has (k – 1) degrees of freedom (df). A linear predictor has 1 df, as 

does a linear contrast. An interaction A × B, where A has a df and B has b df, has ab 

df. In this example, there are two factors, each with two levels each. If there are N 

observations of the dependent variable in total, the total df is (N – 1). In this example, 

N = 24. The total line is not always shown; MStotal is the variance of the dependent 

variable. SS, sum of squares; MS, mean square. 

 

Term df SS MS F p 

A 1 2,795.04 2,795.04 17.738 0.0004289 

B 1 1,650.04 1,650.04 10.472 0.0041415 

A × B 1 2,147.04 2,147.04 13.626 0.0014463 

Residual (error) 20 3,151.50 157.57  

Total 23 9,743.62 423.64  
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Figure 1: Illustration of simple ANOVA types. A: One-way ANOVA, illustrated 

with a dependent variable Y and a single factor A having three levels (A1, A2, A3). In 

all figures, vertical lines indicate deviations that are squared and added to give a sum 

of squares (SS). The total sum of squares of Y (the summed squared deviation of each 

point from the grand mean; left panel) is divided into a component predicted by the 

factor A (the summed squared deviations of the A subgroup means from the grand 

mean, for each point; middle panel) plus residual or error variation (the summed 

squared deviation of each point from the prediction made using A; right panel). The 

SS are additive: total A errorSS SS SS= + . When SSA and SSerror have been divided by 

their corresponding degrees of freedom (the number of independent pieces of 

information associated with the estimate), they may be compared statistically: if 

A ASS / df  is large compared to error errorSS / df , then A is a good predictor. B: Two-way 

ANOVA. Here, two factors A and B are used, each with two levels. From left to right, 

panels illustrate the calculation of SStotal, SSA, SSB, the interaction term SSA×B, and 

SSerror. As before, the SS are additive ( total A B A B errorSS SS SS SS SS×= + + + ) if the 

predictors are not correlated (see text). C: Regression ANOVA, in which Y is 

predicted by a single continuous variable X. As before, the total SS (left panel) may 

be divided into a component predicted by the model (middle panel) and residual or 

error variation (right panel). 

 



Cardinal; Analysis of variance; page 15 of 15 

Figure 2: Assessing the effects of correlated predictors. Suppose a dependent 

variable Y is analysed by two-way ANOVA, with predictors A, B, and their 

interaction (A×B or AB). The total variability in Y is represented by the sum of 

squares (SS) of Y, also written SStotal or SSY. This may be partitioned into SS 

attributable to A, to B, to the interaction AB, and to variability not predicted by the 

model (SSerror). A: If the predictors are uncorrelated, then the SS are orthogonal, and 

are additive: total A B AB errorSS SS SS SS SS= + + + . ANOVA calculations are 

straightforward. B: If the predictors are correlated, then the SS are not additive. There 

are various options for assessing the contribution of the predictors. For example, one 

possibility is to assess the contribution of each predictor over and above the 

contribution of all others; thus, the contribution used to assess the effect of A would 

be t, that for B would be x, and that for AB would be z (often termed ‘marginal’, 

‘orthogonal’, or ‘Type III’ SS). A second possibility is to adjust the main effects for 

each other (i.e. not to include any portion of the variance that overlaps with other 

main effects), but not for the interaction (so SSA is t + w, SSB is x + y, and SSAB is z, 

often known as ‘hierarchical’ or ‘Type II’ SS). Stated more generally, this approach 

adjusts terms for all other terms except higher-order terms that involve the same 

predictors. Alternatively, if there are reasons to treat the predictors as a hierarchy with 

A taking precedence, then one could assess the contribution of A (t + u + v + w), to 

assess the contribution of B above this (x + y), and then to assess the contribution of 

the interaction above these (z) (often termed ‘sequential’ or ‘Type I’ SS). These and 

other approaches to this problem have different advantages and disadvantages 

according to the type of design being analysed. In practice, unless the sequential 

approach is desired, Type III SS are often used but the best approach is debated. All 

represent ways of comparing pairs of models of the data, as described in the text, to 

assess whether the difference between the models is significant; the experimental 

hypotheses determine the comparisons to be made. 
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B2

B2

A1,B2 A2,B1 A2,B2

actual group mean

Predicted by A and B jointly, beyond what
is predicted by A and B independently

(i.e. predicted by AxB interaction)

B1
mean

B2
mean

B1
mean

B2
mean

A1,B1 A1,B2 A2,B1 A2,B2

Predicted by B

A1
mean

A2
mean

A1,B1 A1,B2 A2,B1 A2,B2

Predicted by A

overall
mean

A1,B1 A1,B2 A2,B1 A2,B2

Total variation

A. One-way ANOVA (one between-subjects factor with three levels)

C. Regression ANOVA (linear regression; one continuous predictor)

B. Two-way ANOVA (two between-subjects factors, each with two levels)
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t u

v
w y
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A. Uncorrelated predictors
     (orthogonal sums of squares)

B. Correlated predictors
     (nonorthogonal sums of squares)


