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The complexity of drug addiction mirrors the complexity of

the psychological processes that motivate animals to work

for any reinforcer, be it a natural reward or a drug. Here, we

review the role of the nucleus accumbens, together with its

dopaminergic and cortical innervation, in responding to

reinforcement. One important contribution made by the nucleus

accumbens is to the process through which neutral stimuli,

once paired with a reinforcer such as a drug, have the capacity

to motivate behaviour. This process may be one of several

contributing to addiction, and it may be amenable to

pharmacological intervention.
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Abbreviations
Acb nucleus accumbens

AcbC nucleus accumbens core subregion

CeA central nucleus of the amygdala

CS conditioned stimulus

DA dopamine

NMDA N-methyl-D-aspartate

PKA protein kinase A

Introduction: the psychology of action
The study of motivated action is the study of instru-

mental conditioning — the process by which animals

alter their behaviour when there is a contingency

between their behaviour and a reinforcing outcome

[1]. Instrumental conditioning is neither psychologically

nor neurally simple. Rats and humans exhibit goal-direc-

ted action, which is based upon knowledge of the con-

tingency between one’s actions and their outcomes, and

knowledge of the value of those outcomes; these two

psychological processes interact so that we work for that

which we value [2,3]. However, this value system is not

the brain’s only one. Remarkably, this ‘cognitive’ value

system that governs goal-directed actions (sometimes

termed ‘instrumental incentive value’) can be distin-

guished and dissociated [4] from the valuation process

that determines our reactions when we actually exper-

ience a goal such as food — termed ‘liking’, ‘hedonic

reactions’, or simply ‘pleasure’ [5] — although under

normal circumstances the two values reflect each other

and change together. Just as there is more than one value

system, there is more than one route to action. Not all

action is goal-directed; with time and training, actions

can become habitual [6] — that is, elicited in relevant

situations by direct stimulus–response mechanisms.

Environmental stimuli have effects beyond eliciting

motor responses, however; stimuli that predict reward

may become conditioned stimuli (CSs) through Pavlo-

vian associative learning, and Pavlovian CSs can motiv-

ate behaviour directly and can serve as the goals of

behaviour [7�].

Drug addiction, in some way an ‘abnormal’ set of moti-

vated behaviours, reflects the complexity of instrumental

conditioning itself. Addiction is multifactorial. Some

drugs of abuse undoubtedly have a positive hedonic

impact; pleasurable events come to have high instrumen-

tal incentive value, and so drugs are taken in part because

they are liked — at least initially. Many, if not all,

addictive drugs produce a physical and/or psychological

withdrawal state when intake ceases. In general, the

instrumental incentive value of reinforcers does not in-

trinsically depend on motivational state, but comes to do

so as a consequence of hedonic experience [3]. Hunger, a

natural motivational state, increases the hedonic impact

of foodstuffs [8] and this in turn teaches the animal that it

is worth working for those foodstuffs more when it is

hungry [3]. Similarly, opiate withdrawal reflects a ‘new’

motivational state that the animal can perceive intero-

ceptively; the state of withdrawal perhaps enhances the

hedonic impact of opiates, and this in turn teaches the

animal that it is worth working more for opiates — that

opiates have a higher instrumental incentive value —

when it is in a state of opiate withdrawal [9]. The hedonic

impact of a reinforcer may therefore be a ‘common

currency’ for determining the value of widely varying

reinforcers (for example [10]). Responding for drugs of

abuse can become habitual [11] (sometimes thought of as

‘compulsive’ responding when it occurs at an abnormally

high level, as it does not depend on the current value of

the goal). Finally, stimuli that have become Pavlovian

CSs by virtue of their association with a drug can moti-

vate behaviour (for example [12]). One key challenge for

the neuroscience of addiction is to understand how these

basic mechanisms influencing motivated behaviour

operate within the brain, and to establish if and how
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drugs of abuse have effects qualitatively or quantita-

tively different from those of ‘natural’ reinforcers. Here,

we discuss some of the striatal and cortical systems that

affect responding for reinforcement and the manner in

which they might influence and be influenced by drug

addiction.

Neural underpinnings of instrumental
conditioning
Several limbic cortical and subcortical structures play a

role in assessing the value of reinforcers and of stimuli

that predict them, and in actions directed at obtaining

those reinforcers or stimuli [7�]. The contribution of key

elements of this circuitry, including the amygdala and

orbitofrontal cortex, are discussed by Holland and

Gallagher and Matsumoto and Tanaka (this volume),

and in this review we will therefore restrict out discus-

sion primarily to the role of the nucleus accumbens

(Acb) and its dopaminergic innervation (also discussed

by Schultz, this volume).

The contribution of the Acb to instrumental learning is

still not fully understood. Blockade of N-methyl-D-aspar-

tate (NMDA)-type glutamate receptors in the Acb pre-

vents rats from acquiring a lever-press response on a

simple (variable ratio 2) schedule, even though the same

treatment does not affect performance of a previously

learned response [13]. Concurrent blockade of NMDA

and dopamine (DA) D1 receptors also synergistically

prevents learning [14]. Learning of this kind is known

as free-operant instrumental learning because the subject

is free to perform the operant (response) at any time. It

depends upon successful performance of the response,

successful and timely collection of the reinforcer, and a

normal mechanism to associate the two. Therefore, a drug

may interfere with instrumental learning either because

the receptor blockade directly impairs a learning process

itself or because it interferes with the performance of

some behaviour, such as promptly collecting the food,

that is itself required to learn the lever-press response

normally. Likewise, pharmacological manipulations, like

neurotoxic lesions, could in principle induce ‘compensa-

tory’ (or other) changes in activity in other brain regions.

However, in elegant experiments Kelley and co-workers

have shown that infusion of a cyclic adenosine monopho-

sphate (cAMP)-dependent protein kinase A (PKA) inhi-

bitor [15] or a protein synthesis inhibitor [16��] into the

Acb core subregion (AcbC) after instrumental training

sessions impairs subsequent performance. This implies

that PKA activity and protein synthesis in the AcbC

contribute to the consolidation of instrumental behaviour.

Although these results indicate that the Acb is involved in

the multifactorial process of instrumental learning, its

specific contribution to this set of processes is not clear.

Certainly many aspects of instrumental responding do not

require the Acb. Destruction of the Acb neither prevents

rats from detecting changes in the contingency between

actions and outcomes nor prevents them from responding

to changes in goal value [17,18]. Thus, the Acb is not

critical for goal-directed action [7�]; rather, it appears to be

critical for some aspects of motivation that promote

responding for rewards in real-life situations. For exam-

ple, the Acb plays a role in promoting responding for

delayed rewards [19] and is required for Pavlovian CSs to

provide a motivational boost to responding [17,20]. The

latter effect is termed Pavlovian–instrumental transfer —

or sometimes ‘wanting’ [21,22], although this term could

equally refer to the instrumental incentive value under-

pinning true goal-directed action. Pavlovian–instrumen-

tal transfer can be further enhanced by injection of

amphetamine into the Acb [21] and depends on DA

[23]. Pavlovian CSs also serve as goals for behaviour

(i.e. serve as conditioned reinforcers), and although

lesions of Acb subregions do not prevent animals respond-

ing for conditioned reinforcement entirely [24], enhance-

ment of DA neurotransmission within the Acb can boost

the efficacy of conditioned reinforcement [24–27]. Stu-

dies of the role of Acb DA in schedules involving high

work requirements (that require subjects to perform a lot

of work in order to obtain reinforcement) also support the

view that Acb DA contributes directly to subjects’ moti-

vation to work [28�,29]. In naturalistic situations, rewards

are frequently available only after a delay, require con-

siderable effort to achieve, and are signalled by environ-

mental stimuli; thus, the Acb is central to several

processes that require motivation.

Pavlovian CSs that have been paired with reward also

elicit approach — that is, animals approach stimuli that

predict reward. This effect, known as ‘autoshaping’ [30],

depends on the Acb [24,31,32], its DA innervation [33�],
and on information arriving at it from the anterior cingu-

late cortex [32], which could serve to discriminate stimuli

that have previously been paired with reinforcement from

those that have not [34]. Although this entire system must

be intact for performance of an autoshaped approach

response, additional structures appear to play a role

specifically in learning to approach rewarded stimuli. Loss

of Acb DA has a much greater impact if it occurs before

the task is learned than afterwards [33�], which suggests

that DA contributes to learning in this task. Destruction

of the central nucleus of the amygdala (CeA) dramatically

impairs rats’ ability to learn this task [35] yet has no effect

once the task has been acquired [36�], implying that for

this task, the CeA contributes solely to learning. One

possibility is that it does so by regulating the DA innerva-

tion of the Acb [20,37].

At a cellular level of analysis, the rate at which rats learn

an arbitrary response that delivers electrical stimulation to

the substantia nigra is correlated with the degree to which

similar electrical stimuli potentiated synapses made by

cortical afferents onto striatal neurons in the same animals

Neural and psychological mechanisms underlying appetitive learning Cardinal and Everitt 157

www.sciencedirect.com Current Opinion in Neurobiology 2004, 14:156–162



when anaesthetised, a potentiation that requires DA

receptors [38]. DA has acute effects to modulate cortico-

striatal transmission, but it also has lasting effects; it is

most likely that the combination of cortical (presynaptic)

and striatal (postsynaptic) activity induces long-term

depression of corticostriatal synapses, but if the same

pattern of activity is paired with a large phasic increase

in DA, then the active synapses are potentiated [39�].
Furthermore, acquisition of instrumental responses on a

simple schedule is also disrupted synergistically by con-

current blockade of NMDA and DA D1 receptors in the

prefrontal cortex (PFC) [40�], a region that is known to be

required for rats to represent declaratively the contingen-

cies between instrumental actions and their outcomes

[41]. By contrast, hedonic assessment of rewards them-

selves, or ‘liking’, does not depend on dopaminergic pro-

cesses [23,42–44]; instead, it appears to involve opioid

mechanisms in the Acb shell subregion (AcbSh) and other

systems in the pallidum and brainstem [45,46].

Modification of this dopaminergic motivational process

may have therapeutic potential, as it might contribute to

addiction in several ways. Relapse is common in many

forms of drug addiction, which could in part be because

detoxification does not extinguish the ability of drug-

associated cues in the addict’s environment to trigger

craving and relapse to drug-taking [47]. Such cues might

have motivational effects because they act as conditioned

reinforcers (such that addicts work for them) or through

Pavlovian–instrumental transfer (such that simply en-

countering them triggers or enhances drug-seeking); cues

that previously signalled drug availability are especially

potent in this respect [48]. As the motivational impact of

reward-associated cues depends on the Acb and its DA

innervation [7�,17,20,21,24–27,31,32,33�], modulation of

Acb or DA neurotransmission could be useful to reduce

the motivational impact of drug-associated cues. In ani-

mal models of drug-seeking behaviour controlled by

drug-associated stimuli [49], lesions of the AcbC or dis-

ruption of its glutamatergic afferent innervation reduce

drug-seeking [50,51], probably by reducing the motiva-

tional impact of the CSs. It may also be possible to target

the mesolimbic DA system with some specificity to

reduce drug seeking. DA D3 receptors are particularly

concentrated in the Acb and amygdala [52], and both D3

receptor antagonists [53�,54] and partial agonists [55,56]

reduce cue-controlled cocaine seeking or relapse to

cocaine-taking in animal models, and have potential for

clinical use.

Differences between drugs of abuse and
natural reinforcement
Clearly, ‘natural’ reinforcers, such as food and sex, have

their effects in very similar ways to ‘artificial’ reinforcers,

such as drugs of abuse; there may be no sharp dividing

line between the two. A behavioural economic view

would liken addiction to that situation in which demand

for a particular reinforcer (drug) has become relatively

‘inelastic’ — that is, it remains high in the face of

increased price or other costs associated with drug-taking

[57–60]. Yet this could represent a quantitative rather

than a qualitative difference in reinforcement: below a

certain level of food intake, there is also inelasticity in the

demand for food. As Kelley and Berridge [46] recently

noted, drugs could activate the same circuits as natural

rewards, perhaps in a more potent manner; they could

create new states, such as the motivational state of with-

drawal, and/or they could differentially affect the balance

of processes (such as habits, goal-directed actions, and

cue-induced motivation) that normally contribute to

responding for natural rewards. Neurobiologically, how

might natural and drug reinforcement be differentiated?

Both food and drugs of abuse increase Acb DA, but the

DA response to drugs of abuse may not habituate to the

same extent as that to food [61]. Some manipulations that

reduce drug-seeking or reinstatement of drug-taking in

animal models, such as DA D3 receptor antagonists, do

not reduce food-seeking in a similar manner [53�,54].

However, there are also differences in the effects of,

and neural basis of responding for, highly palatable and

less palatable foods — relevant to the semantically diffi-

cult question of whether or not one can be said to be

addicted to food, or a particular subset of foods. Manip-

ulations of the opioid system affect food preference: intra-

Acb administration of m opioid receptor agonists (puta-

tively modulating hedonia [45]) increases the intake of

highly palatable foodstuffs including fat, sweet foods such

as sucrose and saccharin, salt, and ethanol [62�,63–66]. In

addition, chronic ingestion of chocolate induces adapta-

tions in endogenous Acb opioid systems [67].

Sensitisation might also differentiate drug from non-drug

reinforcement. An influential contemporary theory of

addiction emphasises the role of drugs in sensitising an

incentive motivational system [68]. There is no doubt

that repeated exposure to drugs can induce an enhanced

(sensitised) response to the locomotor effects of the drug

[68], to Pavlovian conditioned stimuli [22,69] and condi-

tioned reinforcers [70]; sensitisation to amphetamine can

also cause increased responding for amphetamine under a

progressive ratio schedule [71]. Yet it is intriguing that

many studies investigating the effects of drug sensitisa-

tion on cue-controlled behaviour have shown enhanced

responding for natural rewards or responding to natural-

reward-related stimuli following sensitisation to drugs

[22,69,70], rather than an enhanced response to drug-

related stimuli. By contrast, a primary characteristic of

human addiction [72] is that responding for non-drug

reinforcement decreases relative to that for drug reinfor-

cement (whether because the value of, or motivation to

seek, the drug increases or the value of non-drug rein-

forcers decreases), rather than increasing motivation to

seek natural reinforcers, as seen in many animal studies of
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sensitisation. Cross-sensitisation can occur between differ-

ent classes of drugs; are there situations in which repeated

exposure to some types of natural reinforcer produces

sensitisation to the effects of either natural rewards or

drugs? It remains to be definitively established to what

extent sensitisation contributes to human addiction [73].

Another key characteristic of human addiction is that drug

taking persists despite considerable adverse conse-

quences, which has frequently been suggested to indicate

compulsive or involuntary behaviour. Do drugs of abuse

induce habitual, ‘involuntary’ responding faster than nat-

ural reinforcers [74–77]? One hallmark of habitual, as

opposed to goal-directed, responding is that it persists

even if the reinforcer’s value is reduced [2]. Although it

has proved difficult to devalue drugs of abuse — perhaps

itself a difference between natural and drug reinforcers —

some studies attempt to address this issue. While cocaine-

seeking can be goal-directed [78], under some circum-

stances responding for cocaine can be less susceptible to

devaluation of the reinforcer (that is, more habitual) than

responding for natural reinforcers [79]. Similarly, alcohol-

seeking may reflect primarily habitual, rather than goal-

directed, responding [80��]. Soon after acquisition,

cocaine-seeking is readily suppressed by an aversive

CS, whereas following prolonged experience of cocaine,

this conditioned suppression is lost (Vanderschuren,

Everitt, unpublished). The development of motor habits

could depend on dorsal striatal plasticity [81] — indeed,

dorsal striatal DA release is a correlate of well-established

cocaine-seeking [82] — and the balance between habits

and goal-directed behaviour may also be regulated by the

prelimbic and infralimbic cortex [83��].

Conclusions
Key questions remain as to what extent food and drug

reinforcement are qualitatively or quantitatively differ-

ent. Is sensitisation of a motivational system a specific

property of drugs of abuse that gives them value above

that of alternative reinforcers and renders the user hyper-

sensitive to ‘wanting’ induced by environmental cues

signalling the availability of those drugs? Does compul-

sive (or habitual) responding develop as a consequence of

sensitisation, can it develop in the absence of sensitisation

merely as a consequence of repeated use (as would be

suggested by analogy with food reinforcement), or is

habitual responding directly promoted by drugs of abuse,

independent of sensitisation? The majority of (say)

cocaine users do not progress to a stage of addiction in

which cocaine use has major detrimental consequences;

are those individuals whose lives are bent to the pursuit of

drugs those individuals whose motivational brain systems

are vulnerable to being captured by any particularly

salient, opioid-, or DA-releasing reinforcer [84,85], in-

cluding highly palatable foods and gambling, with drugs

of abuse simply representing a potent example of this

class of reinforcers?

Behavioural economics and animal learning theory offer

tools to analyse the psychological processes contributing

to addiction. Neurobiological studies are likely to use

these tools more and more to establish the functions of

brain systems that bring animals closer to reinforcement,

and in the process characterise the nature of individual

differences that might predispose to addiction and iden-

tify potential therapeutic targets.

Update
Two recent studies have shed further light on the way in

which habits are acquired and/or expressed. Rats with

lesions of the dorsolateral striatum do not acquire habits

normally [86�], while the infralimbic cortex may sup-

press goal-directed actions once behaviour has become

habitual [87�].
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