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Abstract

The adjusting-delay task introduced by Mazur (Quantitative analyses of behavior: V. The effect of delay and of intervening events on

reinforcement value, 1987, pp. 55–73) has been widely used to study choice of delayed reinforcers. This paradigm involves repeated choice

between one reinforcer delivered after a fixed delay and another, typically larger, reinforcer delivered after a variable delay; the variable

delay is adjusted depending on the subject’s choice until an equilibrium point is reached at which the subject is indifferent between the two

alternatives. Rats were trained on a version of this task and their behaviour was examined to determine the nature of their sensitivity to the

adjusting delay; these analyses included the use of a cross-correlational technique. No clear evidence of sensitivity to the adjusting delay was

found. A number of decision rules, some sensitive to the adjusting delay and some not, were simulated and it was observed that some effects

usually supposed to be a consequence of delay sensitivity could be generated by delay-independent processes, such as a consistent,

unchanging relative preference between the alternatives. Consequently, the use of explicit analysis of delay sensitivity is advocated in future

research on delayed reinforcement. q 2002 Published by Elsevier Science Ltd.
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1. Introduction

While delayed reinforcement can have profound effects

on learning (Dickinson, Watt, & Griffiths, 1992; Grice,

1948), it can also affect choice behaviour in well-trained

animals. The effects of delays to reinforcement on choice

have been extensively investigated in the consideration of

‘impulsive choice’ (Ainslie, 1975), exemplified by the

inability of an individual to choose a large delayed reward in

preference to a small immediate reward. Choice with

delayed reinforcement may be assessed using free-operant

tasks such as the concurrent-chains procedure (Davison,

1987) or in discrete trials. Discrete-trial tasks may be further

subdivided into ‘systematic’ tasks (Evenden & Ryan, 1996),

in which the experimenter varies the delay to one or more of

several reinforcers and then measures choice, and ‘adjust-

ing’ tasks, in which the subject’s behaviour determines

which delays are to be sampled. Such tasks have provided

experimental evidence forming the basis for models of

delayed reinforcement and neuromodulator function, not-

ably that of serotonin (5-hydroxytryptamine or 5-HT) (Ho,

AlZahrani, AlRuwaitea, Bradshaw, & Szabadi, 1998;

Mazur, 1987, 1997; Wogar, Bradshaw, & Szabadi, 1993).

The adjusting-delay task was introduced by Mazur

(1984, 1987, 1988). Its principle is as follows. Subjects

are given repeated choices of a small reinforcer A delivered

after a small fixed delay (dA, which may be zero to give

immediate delivery) and a large reinforcer B delivered after

a longer delay (dB). The delay dB may be altered; it is

known as the adjusting delay. There is a rule for adjusting

dB depending on the subject’s choices: if the subject

consistently chooses the small (‘fixed’, ‘unadjusting’)

reinforcer, the delay to the large reinforcer is reduced,

while if the subject prefers the large reinforcer, the adjusting

delay is increased. It is assumed that subjects are sensitive to

the changes in the adjusting delay. The objective is that the

adjusting delay tends to an equilibrium value dB0 (dB

prime), the ‘indifference point’ at which the effect of the

delay of reward B cancels the effect of the larger magnitude

of the reward and the two alternatives are chosen equally

often. In practice, trials are usually grouped into blocks of

four. The first two trials are forced presentations of each

alternative separately, to ensure that the subject samples the

currently programmed delays and reinforcers. The other two

0893-6080/02/$ - see front matter q 2002 Published by Elsevier Science Ltd.

PII: S0 89 3 -6 08 0 (0 2) 00 0 53 -9

Neural Networks 15 (2002) 617–634

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ44-7092-340641; fax: þ44-7092-

340645.

E-mail address: rudolf.cardinal@pobox.com (R.N. Cardinal).

http://www.elsevier.com/locate/neunet


are free-choice trials. If the subject chooses the same

alternative on both of these trials, the delay dB is altered

according to the rules stated above. If the subject chooses

each alternative once, dB is not altered. Subjects perform

this task until dB has reached a stable value—various

definitions of stability have been used—and the mean value

of dB for stable trials is taken as dB0.

This task has provided strong support for the view that

the effects of delayed reward are well described by a

hyperbolic discount function (Mazur, 1987), and has been

used with success in describing subjects’ choice with

delayed, probabilistic, and conditioned reinforcement

(reviewed by Mazur (1997)). It has been used to assess

the effects of motivational manipulations on choice (Wogar,

Bradshaw, & Szabadi, 1992), and a version in which the

magnitude of the reward is varied according to the same

principles has proved useful (Richards, Chock, Carlson, de

Wit, & Seiden, 1997a; Richards, Mitchell, de Wit, &

Seiden, 1997b; Richards, Sabol, & de Wit, 1999). The

adjusting-delay task has also provided evidence that

forebrain 5-HT contributes to the effectiveness of delayed

reinforcers (Wogar et al., 1993), an important aspect of

modern models of 5-HT function (Ho et al., 1998) (see also

K. Doya, this issue).

So far, this success has been on the ‘molar’ timescale;

that is, based on values of dB0 that are the mean of dB over a

long series of choices on the part of the subject. As part of a

series of experiments to establish the effects of acute

manipulations of ascending monoamine (dopamine and 5-

HT) systems on impulsive choice (Cardinal, Robbins, &

Everitt, 2000; Rogers et al., 1999), the present study was

designed to investigate choice behaviour in this task at a

‘molecular’ (trial-by-trial) level by examining the relation-

ship between dB and choice. Rats were trained on the

adjusting-delay task and their choices analysed to determine

their sensitivity to dB. As a simple relationship between dB

and choice was not found, computer simulations were

conducted to investigate which observed features of

performance can be explained by factors independent of

dB, and direct evidence was sought of rats’ sensitivity to

their history of recent delays.

2. Experiment

2.1. Methods

2.1.1. Subjects

Eight experimentally-naı̈ve male Lister hooded rats were

housed in pairs under a 12:12 h reversed light-dark cycle.

Subjects were approximately 15 weeks old on arrival at the

laboratory and were given a minimum of a week to

acclimatize, with free access to food, before experiments

began. Experiments took place between 09:00 and 18:00,

with individual subjects being tested at a consistent time of

day. Subjects were provided with free access to water, and

maintained throughout the experiment at 85% of their free-

feeding mass using a restricted feeding regimen. Feeding

occurred in the home cages at the end of the experimental

day. All experimental procedures were subject to UK Home

Office approval (Project Licences PPL 80/00684 and PPL

80/1324).

2.1.2. Apparatus

Testing was conducted in four identical operant

chambers (30 £ 24 £ 30 cm; Med Instruments Inc., Georgia,

Vermont, USA; Modular Test Cage model ENV-007CT),

each fitted with a 2.8 W overhead house light and two

retractable levers (operating force ,0.3 N), with a 2.8 W

stimulus light above each lever. Between the levers was an

alcove fitted with a 2.8 W lightbulb, an infrared photodiode

and a tray into which could be delivered 45 mg sucrose

pellets (Rodent Diet Formula P, Noyes, Lancaster, NH,

USA). The apparatus was controlled by software written by

R.D. Rogers, N. Daw, and R.N. Cardinal in Arachnid (Paul

Fray Ltd, Cambridge, UK), a real-time extension to BBC

BASIC V running on an Acorn Archimedes series

computer.

2.1.3. Behavioural task

The behavioural task was based on that of Mazur (1987,

1988) and closely resembled that used by Wogar et al.

(1992, 1993). Rats were first trained to press both levers

(fixed-ratio-1 schedule, one-pellet reinforcer) in 30 min

sessions daily, until a criterion of 50 presses per session was

reached. The two levers were designated Levers A and B,

counterbalanced left/right across subjects. Lever A sub-

sequently produced immediate small rewards (one pellet),

while Lever B produced delayed larger rewards (two

pellets).

At the start of a session the houselight was switched on,

and remained on for the duration of the session. Each

session contained 10 trial blocks. Each block consisted of

four lever presentations. The first two were forced-choice

situations, with Levers A and B presented singly (in random

order). Following these, there were two open-choice

presentations of both levers. Every presentation began

with the illumination of the central alcove light, and the

levers were extended 10 s later.

When the rat responded on a lever, the light above that

lever was switched on, the alcove light was extinguished,

and the levers were retracted. When the rat responded on

Lever A, one pellet was delivered immediately. When it

pressed Lever B, a delay ensued, after which two pellets

were delivered. In both cases, the lever light was switched

off as pellet delivery commenced. If the rat did not respond

on a lever after a ‘limited hold’ period of 10 s, an omission

was scored: the alcove light was switched off and the levers

were retracted. No extra presentations were given to make

up for omissions, but omissions were a very infrequent

event (see Section 2.2).

If Lever A was chosen on both open-choice presenta-
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tions, the delay associated with Reward B was decreased by

30% for the next trial block. If Lever B was chosen on both

presentations, the delay was increased by 30%. If each lever

was chosen once, the delay was not altered. The delay was

initially 2 s and was kept within the range 2–20 s; this range

was increased to 2–45 s from session 21 (trial block 201) as

it became apparent that some rats had reached the maximum

delay. From session 64, the delay was altered by 20% rather

than 30%.

The time between lever presentations was kept constant

at 45 s (or 70 s, after the maximum delay was increased) so

that the choice of lever could not affect the frequency of

reinforcer delivery. There were 10 trial blocks (of four lever

presentations) per session, for a session length of 30 min (or

47 min after the increase in the maximum delay). Adjusting

delays for each subject were carried over from one session

to the next as if there were no break.

Subjects were trained on this task for 80 sessions with

one session per day.

2.1.4. Analysis of behavioural data

Data collected by the chamber control programs were

imported into a relational database (Microsoft Access 97)

for case selection and analysed with SPSS 8.01, using

principles based on Howell (1997).

Choice-by-delay graph. To determine whether the

current adjusting delay influenced the rats’ choice, choice-

by-delay plots were constructed. First, omissions were

excluded. Next, subjects’ responses were assigned to a bin

based on the adjusting delay that was operative at the time

the response was made (using bins of 0.1 log10 units). For

each rat, in each bin, a preference score was calculated,

namely the proportion of choices in which the delayed

reward was selected.

A simple measure of each rat’s sensitivity to delay was

derived by calculating the correlation between the rat’s

choice (unadjusted lever, scored as 0, or adjusted lever,

scored as 1) and the logarithm of the adjusting delay. All

data from every choice trial (excluding omissions) were

used, giving up to 1600 data for most rats. As the preference

variable was dichotomous, the point-biserial correlation rpb

was used (Howell, 1997, pp. 257/279–283). Once a

correlation coefficient had been computed for each rat, the

group’s coefficients were compared to zero using a two-

tailed t test to establish whether the group exhibited

sensitivity to the adjusting delay.

Cross-correlations of preference and adjusting delay. To

elucidate the causal relationships between the adjusting

delay and subjects’ preference, cross-correlations were

computed. Each rat’s complete data set was examined

using non-overlapping ‘windows’ of 10 choice trials

(examining choice trials 1–10, then trials 11–20, and so

on). Within each window, the rat’s preference for the

adjusting alternative was calculated (the proportion of

choice trials on which the adjusting alternative was chosen).

For the same window, the mean log10(adjusting delay) was

also computed. The calculated preferences and the mean

adjusting delays were placed in temporal order to form two

time series, and the cross-correlation function (CCF) of the

two time series was computed (establishing the correlation

between the two functions at different lags and leads).

This analysis attempts to separate out the influence of

preference on delay from the influence of delay on

preference, establishing the direction of causality. Pre-

ference was scored from 0, being exclusive preference for

the unadjusting (immediate) alternative, to 1, being

exclusive preference for the adjusting (delayed) alternative.

Therefore, as preference was programmed to affect the

adjusting delay in this task, it was expected that delays

would be positively correlated with preference scores from

the recent past. Similarly, if long delays were aversive to the

subjects, as might be anticipated, it would be expected that

preference scores would be negatively correlated with delays

from the recent past (equivalently, that delays would be

negatively correlated with preference in the immediate future).

Mathematical background and pre-processing of data.

Cross-correlation depends upon a number of assumptions

(Gottman, 1981, pp. 321–322; McCleary & Hay, 1980, pp.

229–273). A thorough treatment will not be presented here.

However, interpreting a CCF requires that there be no

autocorrelation in either variable. (A variable exhibits

autocorrelation when its value at some time point can be

predicted from the value of the same variable at a different

time.) Autocorrelation in either variable can introduce

spurious correlation into the CCF; thus, a cross-correlation

of autocorrelated variables is uninterpretable (McCleary &

Hay, 1980, pp. 243–246). To correct this, transformations

are conducted before cross-correlating; this process is called

‘prewhitening’ and is performed on each variable separ-

ately, termed ‘double prewhitening’ (Bautista, Alonso, &

Alonso, 1992; Hare, 1996, Chapter 1).

To prewhiten a time series, an autoregressive integrated

moving average (ARIMA) technique was used (Box &

Jenkins, 1970; Gottman, 1981; McCleary & Hay, 1980, p.

18; StatSoft, 1999). This technique aims to build a

mathematical model of a time series that describes the

autocorrelation in the time series, then to subtract the

model’s predictions from the original data, removing

the autocorrelation from the time series. Briefly, the

notation ‘ARIMA( p,d,q )’ describes a mathematical model

of a time series, specifying the degrees to which a time-

lagged value of the variable is used as a predictor

(autoregression; p ), the number of passes on which the

variable should be subtracted from a time-lagged version of

itself before being used as a predictor (differencing; d ), and

the number of moving average parameters (q ). As an

example, an ARIMA(2,1,0) model contains two auto-

regressive parameters and no moving average parameters,

calculated after the series has been differenced once. An

autocorrelation function (ACF), which correlates a function

with a time-shifted version of itself, may be used to identify

the ARIMA model likely to provide the best fit to the data
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in question. Autocorrelation and partial autocorrelation

functions (ACF, PACF) were computed for each variable

being prewhitened (i.e. the preference score time series and

the adjusting-delay time series) and used to identify

autoregressive and/or moving average terms (that is,

particular values of p, d, and q ) as described by McCleary

& Hay (1980), minimizing the number of terms included in

the model (though model parsimony was considered

secondary to obtaining a good fit). This model was then

fitted to the variable, checking that it provided a significant

fit, and the residuals were examined. If the residuals

exhibited no autocorrelation, then the objective had been

achieved: the autocorrelation had been removed from the

original variable, and those residuals were used for cross-

correlation. It should be noted that the process of fitting an

ARIMA model is empirical; a model is fitted to each time

series separately (there are two time series from each

subject), with the sole objective of removing autocorrelation

from that time series. Importantly, the preference score and

adjusting-delay time series were prewhitened independently

before cross-correlation.

Finally, as the usual assumptions of correlation also

apply to cross-correlation, the variables entered into the

cross-correlation were checked for normality using the

Kolmogorov–Smirnov test and by inspection of Q–Q plots

(which plot the quantiles of the variable against the

quantiles of a normal distribution).

To summarize, the following steps were conducted for

each subject:

1. Calculate windowed choice ratios and log(adjusting

delay), to give two time series.

2. Generate and fit an appropriate ARIMA model to each

time series.

3. Cross-correlate the residuals from the two fitted ARIMA

models.

Window size. The results of cross-correlational analysis

depend in part upon the ‘window’ size used—for example,

large windows permit more precise calculation of pre-

ference, but they also obscure rapid, high-frequency

changes in the cross-correlation coefficient. Pilot analyses

were conducted with window sizes of 5, 10, 20, and 40.

Smaller window sizes were not used, to avoid the preference

score approaching a dichotomy, which would have violated

the assumptions of the analysis. In all cases, the maximally

significant cross-correlations were observed with the

minimum window size used (five choice trials); that is,

the ‘optimal’ window size for detecting a correlation did not

vary across subjects. The prewhitened data subjected to

cross-correlation approximated a normal distribution even

with this small window. Furthermore, the use of windows

larger than five did not, in general, alter the lag at which the

maximum cross-correlation was observed. As would be

expected, larger windows yielded larger numerical corre-

lation coefficients, but also increased the width of the

confidence interval (as a larger window reduces the number

of windows being analysed). Therefore, a window size of

five was used for all subsequent analyses. Cross-correlations

were computed out to lags and leads of 200 choice trials (40

decision windows).

2.2. Results

One rat (subject C7) fell ill and ceased responding from

session 72; subsequent data from this rat were discarded.

Responding was otherwise reliable, with rats failing to press

a lever on only 1.5% of presentations. The obtained

adjusting delays for 80 sessions (800 trial blocks) are

shown in Fig. 1 and individual records are shown in Fig. 2. It

is apparent that although the mean of the group of subjects

appears relatively stable in the range 10–15 s, values of dB

for individual subjects varied widely across the permissible

range (which was 2–20 s for the first 20 sessions, and 2–45

s for the remainder).

Choice-by-delay plots. Choice-by-delay plots are shown

in Fig. 3. As preference scores were arbitrarily calculated

such that 0 represents exclusive preference for the

unadjusted alternative (lever A) and 1 represents exclusive

preference for the adjusted alternative (lever B), the

theoretically predicted result would be a line of negative

slope, indicating reduced preference for the large reinforcer

at long delays. The obtained curve is relatively flat,

indicating no effect of delay. If anything, Fig. 3 suggests

that a number of subjects had high preferences for the

delayed reward when the delay was longest, and low

preferences when the delay was low. A plausible interpret-

ation is that the rats had a tendency to repeat their last

response—for example, a subject pressing the unadjusted

lever many times in succession will drive dB down to its

minimum permissible value, after which the subject can

accumulate ‘unadjusted’ responses at the minimum delay.

As a group, the point-biserial correlations did not differ from

zero (t7 ¼ 1:599; NS; data also shown in Fig. 6C).

Slow changes in preference? It is plausible that rats are

not perfectly and immediately sensitive to the adjusting

delay currently in force. An obvious alternative is that the

subjects are not immediately sensitive to changes in dB,

despite the forced-choice trials, but rely on a slow

cumulative learning process that gradually alters preference

once the adjusting delay has been suboptimal for some time,

leading to ‘overshooting’ and oscillation. (For example, a

subject might prefer the large, delayed reinforcer when dB is

low, leading to an increase in dB, yet fail to adjust its

preference to reflect that increase for some time. By then,

dB would have increased beyond the subject’s point of

indifference, the small reinforcer would be preferred and the

cycle would reverse. The value of dB would therefore

oscillate around the indifference point rather than converg-

ing to it.) This may be termed a ‘running average’

hypothesis, since it suggests that the subjects are sensitive

to some form of average of several recent values of dB.
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If the ‘running average’ hypothesis is correct, then it is

not surprising that the choice-by-delay curve was flat in its

middle region. If dB oscillates around in the indifference

point, there will be a range of values of dB for which the

subject sometimes chooses the unadjusted alternative (at

times when it is driving dB down), but sometimes chooses

the adjusted alternative (when it is driving dB up). These

tendencies might cancel out, leading to apparent indiffer-

ence for this range of values of dB.

Cross-correlelograms. However, the ‘running average’

hypothesis predicts that choices should be correlated with

adjusting delays from the recent past. Consequently,

preference scores were cross-correlated with adjusting

delays. For the prewhitening phase, it was found that an

ARIMA(1,0,0) consistently described the vast majority of

autocorrelation in the choice ratio time series, and an

ARIMA(1,0,1) model was used for the delay time series.

The final cross-correlations are plotted for each rat in Fig. 4.

This figure clearly reveals the contingencies programmed

into the task: choice affects delay, such that high preference

for the adjusting alternative is strongly correlated with the

adjusting delay in the near future. In contrast, it is not at all

clear that the adjusting delay affected choice behaviour. If

the delay did affect choice in the theoretically sensible

direction, negative cross-correlations would be expected at

negative lags in Fig. 4. Subjects’ CCFs did exhibit

occasional peaks in this region; to estimate the time course

of the subjects’ apparent sensitivity to the adjusting delay,

the largest cross-correlation coefficients for each rat are

printed in Table 1. It can be seen that there is considerable

variation in the lag at which subjects’ preferences were

maximally correlated with the adjusting delay; some

subjects’ preferences appeared to be affected by the average

adjusting delay from 15 to 40 choice trials previously

(equivalent to 8–20 trial blocks, or 1–2 sessions), some

subjects showed the maximal peak at 80–120 choice trials

(or up to six sessions) previously. Additionally, none of

these peaks is large. If the group is considered as a whole

(Fig. 4B), it is clear that no consistent sensitivity to past

delays is seen.

3. Computer simulations

It is intriguing that subjects performing a task that has

produced highly consistent end-points in other studies

(Mazur, 1987, 1988) did not show clear sensitivity to dB.

To establish what performance is possible using a decision

rule that does not take account of the delay to reinforcement,

a number of decision rules were simulated on a computer,

using the programming language Cþþ (Stroustrup, 1986,

2000); data from the simulations were fed into the same

means of analysis as those from the real rats. Six decision

rules were simulated, as follows:

Fig. 1. Group mean adjusting delay for eight rats, displayed by trial block. Thick and thin lines show mean ^1 SEM. The boundaries between sessions are not

shown. The maximum permissible value of the adjusting delay is shown as a stepped line at the top of the figure; this maximum was increased after session 20

(trial block 200).
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(1) Random. Decisions under the Random rule were

independent of the adjusting delay. The adjusting and

unadjusting alternatives were each chosen with probability

0.5.

(2) Biased. The Biased rule was also delay-independent.

The overall frequencies with which each rat chose the two

alternatives were calculated (ignoring omissions); each

simulated subject was assigned the relative preference of

one of the rats as its bias (as shown in Table 2). On each

choice trial, the adjusting alternative was selected with that

probability.

(3) Biased-60. The Biased-60 rule implemented a fixed

bias; the adjusting alternative was chosen with probability

0.6 (and the unadjusting alternative with probability 0.4).

(4) Markov chain. A Markov chain is an abstract entity

that can be in one of several states at any given moment (a

‘finite state machine’). The chain is characterized by the set

of probabilities of a transition occurring between each

possible pair of states. In the present task, each choice

alternative can be represented as a state (adjusted and

unadjusted). A transition from the adjusted state to the

unadjusted state would then represent a rat choosing the

adjusted lever on one choice trial, and the unadjusted lever

on the next trial. Transition probabilities were calculated for

each rat: all choice trials were placed in order (ignoring

omissions), and the relative frequency of the four possible

transitions were computed (shown in Table 2). Eight

Markov chain simulations were then performed, each

simulation having the characteristic transition probabilities

of one of the rats. The first choice made by each simulation

was also the same as that of its corresponding rat.

(5) Preference. The Preference rule was intended to

Fig. 2. Individual records, for all trial blocks. The thin grey line shows the maximum permissible value of the adjusting delay, as in Fig. 1.
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mimic a ‘perfect’ subject—one whose choices immediately

and accurately reflected the programmed adjusting delay.

Each subject was assigned a preferred delay. On each choice

trial, if the adjusting delay exceeded the preferred delay, the

unadjusting alternative was chosen. If the adjusting delay

was lower than the preferred delay, the adjusting alternative

was chosen. If the adjusting delay exactly matched the

preferred delay, the subject chose randomly (p ¼ 0:5 for

each alternative).

In order to match the Preference rule to the rats, each

simulated subject was assigned a preferred delay derived from

data from one rat; this preferred value was taken to be the mean

adjusting delay over the last 200 trial blocks of testing (blocks

601–800). These values, in seconds, were 9.85 (subject C1),

3.55 (C2), 12.43 (C3), 9.20 (C4), 11.16 (C5), 10.83 (C6), 11.44

(C7: as this subject fell ill, its mean was calculated from trial

blocks 601 to 710 only), and 11.50 (C8). The mean preferred

delay for the simulations was thus 10.0 ^ 0.99 s.

(6) Running Average. The Running Average rule was

also delay-dependent; it used the same basic decision rule as

the Preference rule, and the preferred delays were calculated

in the same manner. However, instead of comparing its

preferred delay to the adjusting delay operative at that

moment, the Running Average rule compared its preferred

delay to the mean of dB over the last several choice trials.

The actual decision window varied from subject to subject

and was chosen arbitrarily. The decision window sizes were

drawn from a normally distributed random variable with a

mean of 40 choice trials and an SD of 20 choice trials. The

actual values used were 10, 60, 55, 52, 40, 22, 70, and 35

choice trials (mean 43, SEM 7).

It should be noted that the simulated Running Average

rule has high mnemonic demands—the subjects remember

every single delay within their decision window—and

biologically more plausible algorithms exist (Killeen,

1981), but it is a simple illustration of sensitivity to past

delays that does not give heavy weighting to the most

recent value. As more plausible algorithms often do give

heavier weighting to more recent values (e.g. exponen-

tially-weighted moving average: Killeen, 1981), the

Running Average rule represents a stringent test of the

analytical technique of cross-correlation as applied to this

situation—if cross-correlation is observed with this rule, it

would certainly be expected with more plausible

algorithms.

Table 3 summarizes these decision rules. For all rules,

the starting conditions and the rules for updating the

adjusting delay based on the subject’s choice were identical

to those in the real task (described earlier), including the

change in the limits set on dB. Six decision rules were

Fig. 3. Choice-by-delay graphs for eight rats. The ordinate (vertical axis) represents a preference score, from 0 (exclusive choice of the unadjusted, immediate

lever) to 1 (exclusive choice of the adjusted, delayed lever), with omissions not analysed. The abscissa (horizontal axis) is log10(adjusting delay); preference

was calculated in bins of 0.1 log units: (A) group mean ^ SEM; (B) individual subjects.

Table 1

Maximum cross-correlations indicating an effect of dB on preference, for

each subject. The cross-correlations were computed using windows of five

choice trials, and the correlation coefficient that was largest relative to its

standard error at a negative lag is listed, as an index of the effect of delay

upon the subject’s choice. No correction has been made for multiple

comparisons (see text)

Rat Lag

(choice trials)

Correlation coefficient Confidence limit

(2 SE)

C1 2125 20.141 20.116

C2 285 20.107 20.114

C3 225 20.123 20.112

C4 235 20.125 20.114

C5 2165 20.146 20.118

C6 245 20.127 20.114

C7 225 20.15 20.112

C8 220 20.173 20.112
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simulated, with eight simulated subjects in each condition.

Simulations were not repeated.

3.1. Simple and cross-correlational analysis of the

simulated decision rules

The evolution of the adjusting delay is shown for the

simulated decision rules in Fig. 5 (compare rat data, Fig. 1).

The Random rule simply generates a random walk between

the limits set on dB. The Biased-60 rule chooses the

adjusting alternative more frequently than the fixed

alternative and thus drives the adjusting delay to high

values, while wide excursions in dB are seen in the Random

rule. The Preference rule generates tight oscillations around

the preferred delay; even though the simulations’ preferred

delays were taken from the rat data, this simulation

generated much less variability than the rats. The Running

Average rule produces a sinusoidal oscillation around the

preferred delay (though as the group means shown in Fig. 5

were derived from eight simulations, each with a different

decision timebase, the oscillation in the group mean did not

have a simple periodicity, having a spectrum with eight

frequency components). The delay-independent rules pro-

duced the pattern superficially most like the rat data, with

the Biased and Markov Chain rules generating values of dB

in a similar range to the rats.

Fig. 6 shows choice-by-delay plots for the simulated

decision rules, demonstrating that this form of plot is

inadequate to demonstrate all but the simplest form of delay

sensitivity: only the simple Preference rule demonstrates a

curve with high relative preference for the adjusting

alternatives at low delays, and low preference at high

delays. The other curves, including the delay-sensitive

Running Average rule, are essentially flat. Indeed, the

Running Average rule shows a reduced preference for the

adjusting alternative at the minimum delay, probably due to

repetition of responses (when the delay is high, for example,

this rule begins to choose the Unadjusted lever and drives

the delay to the minimum value; however, as its decisions

are based upon several recent delays, it does not ‘notice’ that

the delay has reduced for several trials, during which time it

accumulates unadjusted responses at the minimum delay).

Before cross-correlational analyses of the decision rules,

prewhitening was conducted. For the Random, Biased, and

Biased-60 simulations, as would be expected, there was no

autocorrelation in the choice ratio time series, and for the

Markov Chain rule this autocorrelation did not reach

significance. The autocorrelation in the delay time series

for these four rules was modelled successfully by an

ARIMA(0,1,0) model. Autocorrelation in the Preference

simulation was removed using an ARIMA(2,0,1) model for

the choice ratio time series (determined following the

method of Gottman (1981), p. 262), and an ARIMA(4,0,3)

model for the delay time series. For the Running Average

simulation, which took account of delays from many past

choices, a high-order ARIMA(14,0,0) model was required

to remove the vast majority of autocorrelation from both

time series.

Fig. 7 shows the CCFs for the simulated decision rules.

The cross-correlation technique consistently detected the

contingencies built into the task (the causal relationship:

preference ! delay). In addition, this technique success-

fully discriminated between rules that based their decisions

upon the adjusting delay, and those that did not. Significant

negative cross-correlations at negative lags (suggesting

the causal chain: delay ! preference) were detected for the

Preference and Running Average rules, but for none of the

delay-independent rules.

Inspection of individual records of the Random rule

(Fig. 8) revealed occasional ‘significant’ negative cross-

correlations. As this decision rule was not influenced by

the adjusting delay, there are two possible explanations.

Fig. 4. Cross-correlation of preference for the adjusting alternative with the adjusting delay. The analysis is organized so that positive lags indicate the effect of

choice on delay, and negative lags indicate the effect of delay on choice. Thus, the ubiquitous positive correlation at small positive lags is the programmed rule

for adjusting delay: when preference for the adjusting alternative is high, the delay is increased for later trials. A negative correlation at negative lags would

indicate that high delays reduce subjects’ subsequent preference for the delayed alternative. Confidence limits (horizontal dotted lines) are 2 SE: (A) individual

rats; (B) group mean ^ SEM.

Table 2

Overall proportion of choice responses on which the adjusting (Adj) alternative was chosen by each rat, together with lever transition probabilities. As

omissions were ignored, pairs of transition probabilities sum to 1. The final column shows the first choice response ever made by the rat

Rat Overall proportion of Adj responses p(Adj ! Adj) p(Adj ! Unadj) p(Unadj ! Adj) p(Unadj ! Unadj) First response

C1 0.470 0.544 0.456 0.406 0.594 Adj

C2 0.478 0.495 0.505 0.465 0.535 Adj

C3 0.570 0.630 0.370 0.496 0.504 Unadj

C4 0.530 0.579 0.421 0.476 0.524 Unadj

C5 0.489 0.573 0.427 0.409 0.591 Adj

C6 0.557 0.557 0.443 0.557 0.443 Adj

C7 0.551 0.554 0.446 0.546 0.454 Adj

C8 0.565 0.590 0.410 0.534 0.466 Unadj
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The first is failure of the prewhitening process to capture

all of the autocorrelation in the delay time series;

although prewhitening dramatically reduced the degree of

autocorrelation, very small autocorrelations occasionally

remained, having not been described by the ARIMA model.

Autocorrelation can introduce spurious correlation into a

CCF (McCleary & Hay, 1980). The second and more likely

explanation is simple statistical variation. The confidence

intervals calculated by the statistical software used take

into account the number of data points used to calculate

the CCF, but not the number of leads and lags over

which the CCF is computed and the number of

comparisons this implies. The occasional isolated

‘significant’ correlation may therefore reflect Type I

error (false rejection of the null hypothesis). The

relevance of this discussion is in the comparison with

Fig. 4A, the cross-correlation data for the rats. It may

be that occasional negative correlations observed in the

rat data are due to the same processes that contributed

to correlations in Fig. 8, the Random simulations. While

it remains possible that the rats exhibited genuine

sensitivity to delay, though very slight and with a great

deal of variation in its timescale across rats, the rats

exhibited no evidence of systematic, consistent sensi-

tivity to the adjusting delay, which is best assessed by

consideration of the group mean (Fig. 4B).

3.2. Achievement of stability criteria by a delay-independent

decision rule

In a separate simulation, the Random rule was also used

to establish the length of time needed for a randomly

deciding subject to meet the stability criteria previously

used for pigeons by Mazur (1987, 1988). The task simulated

was changed so it matched exactly that used by Mazur

(1988). Thus, the starting adjusting delay was 8 s; trials

were grouped into blocks of two single-lever trials and two

choice trials, as before; the adjusting delay was altered

arithmetically in steps of ^1 s; the minimum value of dB

was 0 s, and there was no maximum set on dB (as the time

between reinforcement and the next trial was held constant

in Mazur’s study, rather than the time between the start of

two consecutive trials). There were 64 trials per session (32

choice trials), the adjusting delay from one session was

carried over directly into the next session, and subjects were

tested for a minimum of 10 sessions. Data from the first two

sessions were discarded and the rest of the data were tested

for stability as follows. Each session was divided into two

32 trial blocks (i.e. 16 choice trials) and the mean adjusting

delay for each block was calculated. The stability criteria

were that: (1) neither the highest or the lowest single-

block mean could occur in the last six blocks; (2) the

mean adjusting delay across the last six blocks was not

the lowest or the highest such six-block mean; (3) that

the mean of the last six blocks was within 10% of the

mean of the preceding six (or within 1 s, whichever was

greater). One hundred instances of the Random rule

were simulated, and the time taken for each to meet

these stability criteria was recorded.

Under these conditions, randomly deciding simulated

subjects reached stability after a mean of 15 sessions

(range 10–43, SD 6, with 10 being the minimum

number of sessions permitted by the criteria). For

comparison, Mazur (1988) found that pigeons reached

stability in a mean of 14 sessions (range 10–29, SD 4;

data taken from Table 1 of Mazur (1988)). These results

indicate that previously applied stability criteria do not

provide a guarantee that subjects are choosing other

than at chance.

3.3. Relationship between bias and mean adjusting delay for

delay-independent decision rules

If subjects that are not sensitive to dB may satisfy

previously applied stability criteria, it is important to

ask whether experimental manipulations could affect the

Table 3

Summary of simulated decision rules. (Adj ¼ selection of the adjusting alternative; Unadj ¼ selection of the fixed alternative)

Simulation name Choice rules

Delay-independent rules

Random p(Adj) ¼ 0.5; p(Unadj) ¼ 0.5

Biased The probability of selecting each alternative was fixed, and set to the overall probability with which one of the

rats chose the alternatives (see Table 2)

Biased-60 p(Adj) ¼ 0.6; p(Unadj) ¼ 0.4

Markov chain The probability of choosing each alternative was based solely on the previous choice, with the transition

probabilities shown in Table 2

Delay-dependent rules

Preference †if delay , preference, p(Adj) ¼ 1; p(Unadj) ¼ 0

†if delay . preference, p(Adj) ¼ 0; p(Unadj) ¼ 1

†if delay ¼ preference, p(Adj) ¼ 0.5; p(Unadj) ¼ 0.5

Each subject had its own preferred delay, matched to one rat; these delays had a mean of 10.0 ^ 0.99 s

Running Average Choice is determined as for the Preference rule, but the delay used to make the decision was the mean of dB

over the 43 ^ 7 most recent choice trials (see text)
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Fig. 5. Group mean adjusting delay for the simulated decision rules, displayed by trial block. All simulations have n ¼ 8: The top panel shows the delay-

independent decision rules, and the bottom panel shows the delay-dependent rules.
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measured value of dB0 without affecting subjects’

sensitivity to the adjusting delay. If a subject takes no

account of moment-to-moment changes in the adjusting

delay dB, it is likely that the subject’s overall bias

between the two alternatives has a systematic effect on

the obtained mean adjusting delay, dB0. To establish

whether a manipulation that influenced a subject’s bias

could in principle affect dB0, the mean value of dB was

calculated over trial blocks 400–800 for each simulated

subject using the Random or Biased-60 decision rules,

yielding one value of dB0 per subject (and n ¼ 8 per

group); these values were then subjected to a univariate

analysis of variance with the decision rule as a

between-subjects factor. It was found that the Biased-

60 rule led to significantly higher values of dB0 than the

Random rule ðF1;14 ¼ 649; p , 0:001Þ:
To establish the quantitative nature of the relationship

between bias and dB0, simulations were conducted using the

Fig. 6. (A) and (B) Choice-by-delay plots for the simulated decision rules. Only the simple Preference rule clearly demonstrates delay sensitivity in this plot,

even though the Running Average rule is also delay-sensitive. (C) Mean (^SEM) correlation coefficients for the correlation between preference for the

adjusting lever and the adjusting delay. Correlation coefficients were calculated for each rat or simulated subject using data from all that individual’s choice

trials; the correlation coefficients were then compared to zero as a group using a two-tailed t-test (*p ,0.05; ***p ,0.001). The Preference rule exhibits a

strong, negative correlation between preference and delay, indicating that it chooses the adjusting lever when the delay is low, and vice versa. The Running

Average rule, which chooses on the basis of delays from the recent past, nevertheless exhibits a small positive correlation between preference and the delay that

is operating at the actual moment of choice. By chance, the Random rule exhibits a statistically significant (though very small) negative correlation! No other

decision rule exhibited significant correlation; neither did the rats’ choices.
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conditions of Mazur (1988) described above. Each simu-

lated subject was assigned a bias towards the adjusting

lever; on every choice trial, it chose the adjusting lever with

pðAdjÞ ¼ bias; and pðUnadjÞ ¼ 1 2 bias: At every level of

bias from 0.4 to 0.6 in steps of 0.01, 100 subjects were

simulated. The stability criteria described above were

applied, and the mean value of dB over the last six (stable)

half-session blocks was measured, just as in Mazur (1988,

Fig. 7. Cross-correlation functions for the simulated decision rules (group means ^ SEM), as in Fig. 4. Confidence limits (horizontal dotted lines) are 2 SE. All

decision rules exhibit a positive cross-correlation at positive lag, a result of the ubiquitous rule through which subjects’ choices affect the adjusting delay. Only

two rules (Preference and Running Average) exhibit a negative cross-correlation at negative lags, a phenomenon that suggests that the adjusting delay affects

the subjects’ choices, as indeed was the case for these and only these two rules.
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Table 1). This simulation was also repeated with dB limited

within a range 0–40 s.

Results of these simulations are shown in Fig. 9. When

no limits were placed on dB, biasing the simulated subjects

towards the adjusting lever increased the quasi-stable value

of dB0 (Fig. 9A), the number of sessions to meet the stability

criteria (Fig. 9B), and the variance of these two measures.

When the maximum value of dB was limited, manipulations

of bias produced a sigmoid change in dB0 (Fig. 9C) with

only minor effects on the number of sessions to criterion,

which followed an inverted-U-shaped curve (Fig. 9D).

There are regions of the curves in Fig. 9A/C that are

approximately linear. Thus, if a subject chooses between the

two levers in a way that is independent of dB, and a

manipulation—such as a change in the reinforcement

available on the unadjusting lever—were to affect its

overall preference for the two levers, the obtained values

of dB’ might vary linearly with that preference (at least

within the approximate range of preference 0.45–0.55).

Fig. 9. Effect of bias on dB0 and on the number of sessions to meet the stability criteria of Mazur (1988) in simulated subjects whose behaviour was independent

of the programmed delay. Every data point represents the results of 100 different simulated subjects. Panels (A) and (B) show the results of simulations in

which no limits were placed on dB. Panels (C) and (D) show simulations in which dB was limited to the range 0–40 s.

Fig. 8. Cross-correlation functions for the simulated Random rule, plotted

for each individual simulated subject (thin grey lines), together with the

group mean (thick black line). Compare Fig. 4.
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4. Discussion

The present experiment failed to demonstrate that rats are

sensitive to the rapidly-adjusting delay to reinforcement

used in the task of Mazur (1987) and Wogar et al. (1992,

1993). Furthermore, individual rats did not, in general,

exhibit stable patterns of choice (Fig. 2). Computer

simulations indicated that the stability criteria previously

applied to this task do not provide a guarantee that subjects

are choosing other than at chance. The simulations also

suggested that even in the absence of sensitivity to the

rapidly adjusting delay to reinforcement, manipulations that

affect subjects’ overall preference for the two alternatives

may have systematic effects on dB0, the primary behavioural

measure in this task.

4.1. Stability criteria do not guarantee that subjects are

sensitive to the adjusting delay

An important point that emerges from these simulations

is that apparent stability cannot be taken as evidence of

subjects’ titrating their preference between the two

alternatives. For example, some of the data series shown

in Fig. 5 could be taken as stable by visual inspection. Even

when investigators use formalized stability criteria, delay

sensitivity is not implied. Mazur (1987, 1988) has used quite

strict criteria to determine when a subject has reached stable

performance. In addition, Mazur reduced the likelihood of

finding spurious stability by taking the final value of dB

from one session as the starting value for the next, rather

than applying the smoothing technique used by Wogar et al.

(1992, 1993), in which the mean value of dB for the last half

of one session is taken as the new starting point. Never-

theless, randomly deciding simulated subjects achieved

Mazur’s criteria within times comparable to real pigeons.

4.2. Potential for extrinsic manipulations to alter subjects’

preferences in a delay-independent manner

The present simulations also show that evidence of an

alteration in dB0 as a result of a behavioural, neuroana-

tomical or neurochemical manipulation is not proof of

delay-dependent decision-making. Comparison of the group

means from the Random and Biased-60 simulations

demonstrated that differences in relative preference for the

two alternatives (such as might be induced, for example, by

differences in sensitivity to reinforcer magnitude or

conditioned reinforcement) can lead to differences in dB0,

even though the decision rules generating these data took no

account of dB. This analysis illustrated a between-group

difference, but the principle applies equally to a within-

subjects manipulation. Therefore, caution should be exer-

cised when interpreting individual or group differences in

dB0 as an effect of a manipulation on delay sensitivity (Ho,

Mobini, Chiang, Bradshaw, & Szabadi, 1999).

4.3. Interpretation of cross-correlational analysis

A number of analytical techniques were applied to this

task for the first time. Analysis of the computer simulations

demonstrated that simply correlating subjects’ choices with

the adjusting delay (dB) operative at the moment of choice

successfully detects ‘perfect’ sensitivity to the adjusting

delay (Fig. 6), but fails to detect more complex forms of

delay sensitivity such as sensitivity to a running average of

past delays. The cross-correlational technique was more

powerful, and successfully detected all the causal relation-

ships embedded in the task itself (influences of choice on

delay) and in the simulated decision rules (influences of

delay upon choice, where applicable). When group data

were considered, the cross-correlational analysis did not

falsely detect causal relationships that were not present.

This suggests that this technique, although complex, might

be a useful way to analyse the causal relationships operating

in this schedule. The technique failed to detect any

consistent effect of the adjusting delay on the choices of

the rat subjects.

4.4. Differences between previous studies and the present

task

A preliminary consideration is whether the present

results are representative of performance on this schedule

generally; the lack of sensitivity could have been a

consequence of procedural differences between the present

experiment and previous studies. In general, the present task

resembled previous rat-based studies (Wogar et al., 1992,

1993) more closely than pigeon-based studies (Mazur, 1984,

1987, 1988). The differences may be enumerated as follows:

The reinforcers used were one and two 45 mg sucrose

pellets. As Mazur (1987) used 2 or 6 s of access to grain as

the reinforcer for pigeons, a larger relative magnitude, it

may be argued that the rats in the present study failed

to discriminate between the large and small reinforcers;

different results might have been obtained if the delayed

reinforcer had been larger. However, at least two rat-based

studies of the adjusting-delay schedule have used one

and two 45 mg food pellets as the reinforcers, with

‘molar’ behavioural results that indicated that the subjects

discriminated between them (Wogar et al., 1992, 1993).

Similarly, although the original studies using this task in

pigeons (Mazur, 1987) required subjects to respond on a

centre, ‘reset’ key between trials, which may have an effect

to reduce perseveration, subsequent studies in rats have not

imposed this requirement (Wogar et al., 1992, 1993), as in

the present study.

In the present experiment, the adjusting delay dB was

varied by 30% at a time (20% for the last phase of the

experiment). In the original studies of pigeons (Mazur,

1987, 1988), dB was altered arithmetically, typically by

^1 s; changing dB by 30% may have resulted in large

swings in preference. However, proportional alterations of
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30% have previously been used successfully (Wogar et al.,

1992, 1993). Furthermore, Mazur (1988) has shown that

increasing the step size has relatively little effect on the

stable value of dB0, though larger steps produce greater

variability (as might be expected) and dB0 sometimes

increases with large step sizes.

The adjusting delay was not allowed to go below 2 s. In

Mazur’s early experiments, the floor on dB was zero;

obviously, a zero floor is not possible with a proportional

alteration, but it is true that studies using proportional

alterations (Wogar et al., 1992, 1933) have not placed a floor

value on dB. It is conceivable, therefore, that the titration

procedure failed because of this. If temporal discounting

were steep enough that the fixed alternative (one pellet

delivered after 0 s) was preferred to two pellets after 2 s, the

indifference point would not be achievable, and subjects

would simply keep dB at its floor value. Though it is

possible that subjects C1, C2, and C5 attempted to do so

episodically (Fig. 2), the CCF analysis did not support this

interpretation, and the other five subjects certainly did not.

In general, rats appear to be better able to wait for delayed

reward than pigeons (Mazur, 2000), making this interpre-

tation unlikely.

Similarly, a ceiling was placed on dB; initially, this was

20 s (Wogar et al., 1993), though it was found necessary to

increase this in the course of the experiment. The pigeon

studies mentioned above did not place a ceiling on dB;

however, as Fig. 2 shows, once the ceiling was raised to

45 s, no rat preferred the adjusting alternative exclusively.

Trials were presented at constant intervals, in order to

ensure that subjects could not do better by choosing ‘small

and often’ instead of ‘large but infrequent’ rewards. This

inevitably enforces a ceiling on dB. In several studies using

this schedule (Mazur, 1987, 1988), the time between trials

was fixed; thus, the possibility existed for subjects to do well

by choosing the smaller reinforcer and so being able to gain

reward more often. Despite this procedural difference,

systematic variations in the ITI do not appear to affect dB0

(Mazur, 1988).

Thus, there are no clear procedural differences between

the present experiment and previous work that offer an

explanation for the present failure to observe sensitivity to

the value of dB.

4.5. Possible reasons for the present failure to observe

sensitivity to the specific value of dB

If rats are given repeated discrete-trial choices between

two unchanging reinforcers of different magnitude, when

neither is delayed, they consistently choose the larger

(Cardinal et al., 2000; Mackintosh, 1974, pp. 190–195). As

the rats in the present experiment did not consistently

choose the larger reinforcer (Fig. 2), the presence of a delay

to reinforcement dB must have had some effect on their

behaviour. Yet no evidence was found of sensitivity to the

specific value of dB by a range of analytical techniques.

Perhaps the rats were directly sensitive to the value of dB,

but in a way that was not detected by the present analyses;

the sensitivity may have been fleeting, or its nature may

have changed across the course of the experiment and was

masked by analysing the entire sequence of choices made by

each rat. Other than the occasional cross-correlational peaks

that reached (possibly spurious) significance (Fig. 4A),

which were also apparent in a delay-independent simulation

(Fig. 8), no evidence was found for delay sensitivity in the

rats. Still another possibility is that the rats did not

generalize from the forced exemplar presentations to the

choice trials, and thus their preference for the adjusting

alternative depended upon how often they had sampled it

recently, as well as upon dB, in a highly complex feedback

manner. A more obvious explanation is that the rats were

not sensitive to rapid changes in dB at all; thus, the presence

of a varying delay to reinforcement influenced their

behaviour, but the specific value of that delay was not a

significant determinant of their choice.

4.6. Differences in the sensitivity of rats to fixed and

variable delays to reward

While the present study was primarily designed to

investigate the suitability of the adjusting-delay task for

assessing the impact of neurochemical manipulations in rats

(see above and Wogar et al., 1992, 1993), it may have

implications for interpretation of this task in other species. It

is clear that pigeons performing on an adjusting-delay

schedule are sensitive to variations in the delay to

reinforcement of the unadjusting alternative (dA) (Mazur,

1988, 1997). On the basis of the present data, it is tentatively

suggested that subjects performing this task are unable to

track rapid changes in dB. According to this hypothesis,

they are unable to choose on the basis of the rapidly

changing delay dB because of its variability, and so come to

assign a certain ‘overall value’ to the adjusting alternative.

The perceived value of the unadjusting alternative,

however, is constant over long periods of time, and when

it changes suddenly, the ‘value’ assigned to the unadjusting

lever changes accordingly. On any given choice trial,

subjects ignore the current value of dB but instead

compare the value of the unadjusting alternative with the

‘overall’ value of the adjusting alternative, giving rise to a

dB-independent preference. The results of the simulations

depicted in Fig. 9 show that this relative preference may be

translated into a quasi-stable value of dB0, and that

preferences within a certain range (approximately 45–

55% preference for either alternative) are related near-

linearly to the value of dB0. The rats in the present study

made 52.6% of free-choice responses on the adjusted lever

on average (range 47.0–56.5%, SD 4.1%), clearly in the

range in which a manipulation affecting relative preference

could alter dB0. In summary, this hypothesis states that

subjects are sensitive to dA but not directly to dB.

Indeed, it has been observed that bias for the adjusting
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alternative, measured as the ratio of dB0 to dA when the two

reinforcers are equal (‘bias for or against the adjusting

procedure itself’; Mazur, 1984, p. 429), increases as a

function of dA (Mazur, 1984, p. 431; though see Mazur,

1987, p. 63, 1988, p. 46). The novel suggestion that animals

can be simultaneously sensitive to changes in dA and

insensitive to changes in dB awaits direct experimental test.

In principle, similar arguments regarding manipulation

effects and bias apply to adjusting-magnitude tasks. The

adjusting-magnitude task (Richards et al., 1997b) is learned

faster than the adjusting-delay task (Ho et al., 1999, p. 369),

suggesting that rats may learn the contingencies more

readily with varying reinforcer magnitudes than with

varying delays to reinforcement (an interpretation compa-

tible with studies of instrumental learning with delayed

reinforcement, e.g. Dickinson et al., 1992; Lattal & Gleeson,

1990). However, the adjusting-magnitude task also involves

a titration method in which subjects’ preference affects a

variable that is assumed to affect subjects’ preference in

turn.

To emphasize a point, the present simulations do not

prove that subjects in previous studies were insensitive to

the value of dB, but demonstrate that many of the observed

molar features of performance can be obtained in the

absence of such sensitivity.

4.7. Comparison to free-operant schedules of reinforcement

In contrast to the present experiment, rats are known to

be able to track reinforcement rate extremely rapidly in

some circumstances, and probably do so by timing

interreinforcement intervals (IRIs). This was demonstrated

by Mark and Gallistel (1994), who used two concurrent

variable interval (VI) schedules of lateral hypothalamic

stimulation, ranging from VI 4 s to VI 256 s. They showed

that the rats’ response allocation tracked not only changes in

the programmed ratio of reward between the two levers, but

also the unprogrammed random fluctuations in the VI

schedule, to an extent that their behaviour was governed by

a very few of the most recent IRIs. This result implies that

rats do not maintain and use a decaying ‘running average’ of

the reward history, at least in that task (Mark & Gallistel,

1994, pp. 90–91); Mark and Gallistel argue persuasively

that their rats tracked the relative ratio of reward rate on the

two levers by timing the interval to detect a fixed number of

rewards (this number being from 1 to 3).

It is an interesting question as to why rats are apparently

capable of timing intervals on a seconds-to-minutes time-

scale and updating choice behaviour based on these

intervals in concurrent VI schedules, but are apparently

incapable of this in the discrete trials adjusting-delay

procedure. It must be acknowledged that the two procedures

are very different. Discrimination of changes in relative

reinforcement rate may be easier than discrimination of

changes in reinforcement delay in a discrete-trial procedure.

One possibility, discussed by Mark and Gallistel (1994, p.

94) is that regular, dramatic changes in reward encourage

extreme sensitivity to these changes, while relative stability

with slow changes in reinforcement parameters (as in the

present task) discourages local sensitivity to the reinforce-

ment contingencies. Whether this reflects the operation of

two psychological processes is unclear, but relative

invariance of response–reinforcement contingencies has

been suggested to be the key factor engendering habitual

responding (Dickinson, 1985); discrete-trial schedules

constrain behavioural variability much more than free-

operant schedules. One highly speculative interpretation is

that the task of Mark and Gallistel (1994) tests goal-directed

action while choice in Mazur’s (1987) procedure is more

heavily influenced by the relative strength of two differen-

tially reinforced stimulus–response habits.

5. Summary

The adjusting-delay task has produced consistent results

on the molar scale and lends itself well to using dB0 values

as a measure of relative preference of different ‘fixed

alternative’ conditions (work reviewed by Mazur (1997)).

However, caution must be exercised when interpreting

effects on dB0 as changes in sensitivity to dB. In the present

study, rats did not update their behaviour rapidly to reflect

changes in dB, and no clear evidence for any form of

sensitivity to dB was found. Rats’ preference did not exhibit

clear stability or consistency even after prolonged training.

These results suggest that rats’ behaviour on this task would

not be characterized well as ‘informed choice’; the

psychological mechanisms underlying choice in this task

are not clear at present. Artificial decision rules that take no

account of dB were found to be able to replicate a number of

observed features of performance on the task, including the

satisfaction of stability criteria and the generation of within-

or between-subject differences in dB0. Therefore, the use of

explicit tests of delay sensitivity is advocated for future

experiments investigating the effects of reinforcement delay

on choice, through the use of tasks in which the causal

relationship between choice and reinforcer delay is one-way

(Evenden & Ryan, 1996) or through cross-correlational

analysis of a two-way causal chain, as in the present

experiments.
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