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Impulsive choice is exemplified by choosing a small or
poor reward that is available immediately, in preference
to a larger but delayed reward. Impulsive choice
contributes to drug addiction, attention-
deficit/hyperactivity disorder, mania, and personality
disorders, but its neuroanatomical basis is unclear. Here
we show that selective lesions of the nucleus accumbens
core induce persistent impulsive choice in rats. In
contrast, damage to two of its afferents, the anterior
cingulate cortex and medial prefrontal cortex, had no
effect on this capacity. Thus, dysfunction of the nucleus
accumbens core may be a key element in the
neuropathology of impulsivity.

When animals act to obtain reinforcement, there is always
some delay between the action and its outcome; thus, to
control the world successfully, animals must be able to use
delayed reinforcement. This ability shows individual
variation: impulsive individuals are influenced less by
delayed reinforcers than self-controlled individuals (1-4). The
neural mechanism by which delayed reinforcement affects
behavior is not presently understood, but several lines of
evidence suggest the nucleus accumbens (Acb) and its
cortical afferents, including the anterior cingulate and medial
prefrontal cortices (ACC, mPFC), as candidate structures that
may be involved in regulating choice between alternative
reinforcers. Firstly, these structures have been implicated in
reinforcement processes: the Acb is a key site for the
motivational impact of impending reinforcers (5, 6), and its
cortical afferents (including the ACC and mPFC) are also
involved in reinforcement learning (7-9). Secondly, these
structures are regulated by major dopaminergic and
serotonergic afferents, and pharmacological manipulations of
these systems affect impulsive choice in rats (2, 10-13).
Thirdly, abnormalities of limbic circuits have been detected
in impulsive individuals: abnormal function of the mPFC and
ACC has been observed in humans with attention-
deficit/hyperactivity disorder (ADHD) (14-16), while the
spontaneously hypertensive rat (SHR), widely used as an
animal model of ADHD (3), exhibits abnormalities of
dopamine release in the Acb and prefrontal cortex (17) and
differences in dopamine receptor density and gene expression
within the Acb (18).

The present study investigated the effects of lesions of the
nucleus accumbens core (AcbC), ACC, or mPFC on rats’
capacity to choose a delayed reinforcer. Evenden and Ryan
(19) developed a model of impulsive choice in which food-
restricted rats choose between a small, immediate appetitive
reinforcer and a large, delayed reinforcer in discrete trials, the
delay to the large reinforcer being increased in steps as the
session progresses. Subjects were trained on this task (Fig. 1)
and assigned to matched groups (20); they then received

excitotoxic lesions of the AcbC, ACC, or mPFC, or sham
lesions (21) before being retested (22-24).

Before surgery, rats exhibited a within-session shift in
preference from the large to the small reinforcer as the large
reinforcer was progressively delayed (Fig. 2, A to C), as is
typical for trained subjects performing this task (13, 19).

Lesions of the AcbC induced a profound and lasting deficit
in subjects’ ability to choose the delayed reinforcer; lesioned
subjects made impulsive choices (Fig. 2D). This was not due
to an inflexible bias away from the lever producing the
delayed reinforcer, as AcbC-lesioned rats still chose the large
reinforcer more frequently at zero delay than at other delays,
and removal of the delays resulted in a rapid increase in the
rats’ preference for the large reinforcer (Fig. 2G). Thus, the
pattern of choice clearly reflected a reduced preference for
the large reinforcer when it was delayed, suggesting that
delays reduced the effectiveness or value of reinforcers much
more in AcbC-lesioned rats than in controls.

AcbC-lesioned subjects were hyperactive and slower to
habituate to the novel environment of the locomotor testing
apparatus, as described previously (25). They were also ~10%
lighter than controls (P < 0.01 throughout testing). However,
it is unlikely that differences in primary motivation
contributed to the impulsive choice of AcbC-lesioned rats.
Firstly, although they ate their maintenance diet more slowly
than shams, they did not differ in consumption of the sucrose
reinforcer used. Secondly, manipulation of motivational state
does not affect choice on this task (13). Thirdly, performance
of AcbC-lesioned animals was not comparable in other
respects to that of sated rats (13); for example, they did not
make more omissions than shams. Finally, Acb-lesioned rats
remain sensitive to reinforcement magnitude, and can respond
over long periods for primary reinforcement when no
alternative is available (26).

In the present study, AcbC-lesioned rats also exhibited
discrimination between the large and small reinforcers. While
these rats initially preferred the small reinforcer at zero delay,
this paradoxical finding probably reflects an induced bias
away from the lever providing delayed reinforcement (13,
19). Prolonged retraining with zero delay resulted in 50% of
lesioned and 70% of sham subjects exhibiting ≥90%
preference for the large reinforcer in all trial blocks.
Nevertheless, the AcbC-lesioned subjects remained
hypersensitive to delays when reintroduced: they significantly
preferred the small immediate reinforcer compared with sham
controls (P < 0.05), showing that impulsivity was present
even when reinforcement discrimination was equivalent at
zero delay.

AcbC-lesioned animals exhibited at least two signs of
ADHD (3, 4): locomotor hyperactivity and impulsive choice.
However, attentional deficits are not evident in such animals:
neither 6-OHDA-induced dopamine depletion of the Acb (27)
nor excitotoxic lesions of the AcbC (28) affect accuracy in
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tests of visuospatial attentional function. Thus, AcbC-
lesioned rats may represent an animal model of the
hyperactive-impulsive subtype of ADHD (4).

The present results show that the integrity of the Acb is
critical for animals to tolerate delays to appetitive
reinforcement. The possibility that the AcbC is required to
maintain the value of a reinforcer over a delay may provide a
novel insight into Acb function. Neuronal activity in the
primate ventral striatum is related to the expectation of
reinforcement across a delay; such activity is a candidate
representation of the goals of behavior (29). Striatal neurons
also respond to past events, maintaining a form of memory
that might assist the association of past acts with
reinforcement (29). These findings are the basis for
computational models of striatal function (30) and indicate
the nature of the information that the AcbC may use to
promote actions leading to delayed reinforcement.
Additionally, the present results demonstrate a role for the
Acb in action selection even when those actions do not differ
in response effort or cost. Thus, reduced preference for
delayed reinforcement may explain the observation that Acb
dopamine depletion prevents rats working hard for a preferred
food (31) and impairs responding on high-effort schedules
(32), as such schedules also impose delays to reinforcement.

Lesions of the ACC, by contrast, did not affect subjects’
ability to choose a delayed reinforcer; their pattern of choice
was indistinguishable from that of sham-operated controls
(Fig. 2E) and remained sensitive to unexpected removal of
the delays (Fig. 2H). This finding contrasts with previous
reports of disinhibited responding in ACC-lesioned rats. For
example, such rats have been found to over-respond to
unrewarded stimuli (7), and to respond prematurely in
situations where they are required to wait (33). However, a
dissociation between motor impulsivity and impulsive choice
is not unprecedented (2).

In the mPFC-lesioned group, preference for the large
reinforcer was below that of shams at zero delay, but above
that of shams at the maximum delay (Fig. 2F). However, a
shift from large to small reinforcer (albeit small) persisted in
lesioned subjects (Fig. 2F) and they remained sensitive to
removal of the delays (Fig. 2I). A plausible interpretation is
that mPFC lesions disrupted the control over behavior by the
passage of time in each session, consistent with the effects of
aspirative mPFC lesions on timing (34).

Thus, while lesions of the AcbC induced impulsive choice,
lesions of two of its cortical afferents did not. An important
task for further investigations is to specify which afferents to
the AcbC contribute to its ability to promote the choice of
delayed reinforcers. One obvious candidate that may convey
information concerning reinforcer value to the Acb is the
basolateral amygdala (6). Another is the orbitofrontal cortex
(OFC), also implicated in the assessment of reinforcer value
and probability (35). The OFC may also be an important
efferent target of information travelling through the Acb, as
this ‘limbic loop’ of the basal ganglia projects back (through
the ventral pallidum) to medial OFC (36) and the OFC also
exhibits activity reflecting the expectation of reinforcement
(29).

The present results provide direct evidence that the Acb is
involved in the pathogenesis of impulsive choice. In addition
to providing neuroanatomical insight into the normal process
through which delayed reinforcement affects behavior, and
demonstrating a previously unknown function of the Acb, this
finding suggests a mechanism by which Acb dysfunction may

contribute to addiction, ADHD, and other impulse control
disorders.
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Fig. 1. Delayed reinforcement choice task. The figure shows
the format of a single trial; trials began at 100-s intervals. A
session lasted 100 min and consisted of 5 blocks, each
comprising two trials on which only one lever was presented
(one trial for each lever, in randomized order) followed by ten
choice trials. The delay to the large reinforcer was varied
systematically across the session: delays for each block were
0, 10, 20, 40, and 60 s respectively.

Fig. 2. Effect of lesions of the AcbC (top), ACC (middle), or
mPFC (bottom) on choice of delayed reward (�OHVLRQHG

group; ̈ �FRUUHVSRQGLQJ�VKDP�JURXS����A to C) shows the
pattern of choice in the last 3 sessions preceding surgery;
corresponding sham/lesion groups were matched for
performance. Subjects’ preference for the large reinforcer
declined with delay (P < 0.001, ANOVA). (D to F) illustrates
choice in the first 7 post-operative sessions. (D) The AcbC-
lesioned group was markedly impaired (**F1,18 = 13.9, P =
0.002), choosing the delayed reinforcer significantly less
often than shams at every delay, including zero (P < 0.023).
However, both groups still exhibited a within-session shift in
preference (sham, F4,36 = 23.7, P < 0.001; AcbC, F4,36 = 14.6,
P < 0.001). (E) ACC lesions had no effect on choice (Fs < 1,
NS). (F) The mPFC-lesioned subjects exhibited a ‘flatter’
within-session preference shift than shams (#F3,55 = 3.19, P =
0.032, group × delay interaction; effect of delay in the sham
group: F3,25 = 17.5, P < 0.001; in the mPFC group: F4,40 =
8.87, P < 0.001). (G to I) illustrates the effects of omitting all
delays in alternating sessions (� ��OHVLRQHG�VKDP�JURXSV

with delays; �¨��OHVLRQHG�VKDP�JURXSV�ZLWKRXW�GHOD\V��HUURU

bars, SED for the three-way interaction). All groups remained
sensitive to the contingencies. (G) Delay removal increased
both the sham- and core-lesioned groups’ preference for the
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larger reward (sham, F4,36 = 13.7, P < 0.001; AcbC, F1,13 =
5.72, P = 0.025). (H and I) ACC- and mPFC-lesioned rats
were also as sensitive to removal of the delays as shams (Fs <
1.7, NS).






