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Statistics
Rudolf N. Cardinal

NST IB Psychology 2004–5

Overview

Welcome to the statistics part of the NST IB Experimental Psychology practical course. NST psychology students gen-
erally learn statistics in each of the three years, and the courses fit together roughly like this:

NST IA Elementary Maths
for Biologists (EMB) (or
better)

Material including algebra, powers, logarithms, trigonometry, calculus, descriptive sta-
tistics, basic hypothesis testing. (More advanced NST students will have taken Quantita-
tive Biology, or NST Maths proper.)

NST IB Psychology Some students joining Part IB Psychology have not done NST IA, and some doing Part II
have not done Part IB. Therefore, we state the background knowledge required for Part
IB and Part II explicitly. For Part IB, the mathematical level assumed is that taught in the
NST IA EMB course; the actual background knowledge required is set out in section 1.

• Please read through the Background Knowledge section (section 1) before the
first statistics practical. It revises GCSE, A-Level, and NST IA material (including
statistical terminology and principles of experimental design, plotting data, descrip-
tive statistics with measures of central tendency and variation, the normal distribu-
tion, probability, and the logic of null hypothesis testing).

• Please bring this booklet and a calculator to every statistics practical.
• Practical 1 (Thu 11 & Fri 12 Nov 2004) will cover correlation and regression (sec-

tion 2).
• Practical 2 (Tue 30 Nov & Wed 1 Dec 2004) will cover parametric difference tests

(section 3).
• Practical 3 (Thu 10 & Fri 11 Feb 2005) will cover nonparametric difference tests

(section 4).
• Practical 4 (Tue 1 & Wed 2 Mar 2005) will cover χ2 tests (section 5).
• The revision practical (Tue 3 & Wed 4 May 2005) will revisit the important points

covered in the course, discuss exam technique, and look at past paper questions.

NST II Psychology • Revision of IB material (background; difference tests; χ2 tests; regression).
• Data handling; transformations and dealing with outliers.
• Analysis of variance (ANOVA) techniques.

In each practical, we will
• cover the basic theory behind a statistical procedure or test (supported by this comprehensive handout);
• use the procedure or test to analyse data that you have collected in a practical class (so bring them along).

We try to make sure that we pair the statistics practicals with the experimental classes so that we cover statisti-
cal tests as you start to need them for the experimental write-ups. This will become apparent as we go along.

• have a go at some examples relevant to the topic.

Sample questions are provided at the end of each section, with further examples and past exam questions in sections
6/7. Worked answers to the questions are also provided (section 8), including worked answers to past numerical exam
questions. Section 9 contains tips on experimental design, and a glossary of experimental design terminology. All the
material here, and all the slides I’ll use during the practicals, will be available from the Psychology web site and at

www.pobox.com/~rudolf/psychology

For each practical, you will need (1) your data; (2) a calculator; (3) this booklet.

There is a compulsory statistics question in the exam. You will be allowed to use your calculator so long as it is an
approved model (see p. 5). You will also be supplied with a clean copy of the statistical tables and formulae in the
exam (section 10, p. 120→), so you don’t have to memorize formulae or procedural details, but you do have to appreci-
ate what a test might tell you, and which test is appropriate for a particular situation. For more details of the format of
the IB exams, see p. 85 and www.psychol.cam.ac.uk → Undergraduate Information → Examination Information.

RNC, 30 July 2004.
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1. Background knowledge

Objectives

In this section I’ll cover the background mathematical knowledge required for the IB

psychology course, and the background knowledge that will underpin the statistics
course. I’ll also cover some basics of experimental design.

The problems we face are these. (1) People come to IB psychology with a huge
range of maths backgrounds — from GCSE Maths followed by NST IA Elementary
Maths for Biologists all the way up to A-Level Further Maths followed by NST IA

Maths level ‘B’. The advanced mathematicians will find the statistics in IB psychol-
ogy a walk in the park or will have covered them already. (2) Nobody normal thinks
stats is tremendously exciting; it’s merely a tool for doing research. (3) Many people
think that statistics is hard and/or obscure. So let’s divide the essential from the rest:

Stuff with wavy borders, like this, is advanced or for interest only and may be
ignored. You will NOT be examined on it. Please DON’T get upset if it looks
difficult; in places, it is. You do NOT have to understand it. Although the wavy-
line stuff may improve your understanding if you are a mathematician, you can
understand everything that you need to do good statistics and pass the exams
with flying colours even if you ignore the wavy-line stuff ENTIRELY.

Double-wavy stuff is harder than single-wavy.

The ‘Basic Mathematics’ section (p. 6) covers material that is assumed for IB
Psychology in general (not just the statistics course). We won’t revise it in the
practicals.

Statistics books

You shouldn’t need a maths or statistics book for this course. Should you want one,
undoubtedly the best statistics book I’ve come across is Howell (1997) [see Refer-
ences on p. 131 for full reference]. It’ll cover pretty much all the statistics you need
for Part IB and Part II and is fairly easy to read — as stats books go. Another good
book that doesn’t tell you how, but tells you why, is Abelson (1995).

Calculators and computers

For the exams: an excerpt from the University Reporter, 9 June 2004:

‘… in 2004–05 the only models of electronic calculators that candidates will be permitted to take into the examination room
will be as follows:
(A)… Natural Sciences Tripos, Parts IA, IB, II, II (General), and III;

For the above examinations candidates will be permitted to use only the standard University calculator CASIO fx 100D,
CASIO fx 115 (any version) or CASIO fx 570 (any version except the fx 570MS). Each such calculator must be marked in
the approved fashion. Medical and veterinary students who have previously had a calculator of similar or inferior specifica-
tion marked as approved will be permitted to use this calculator in biological examinations in Part II of the Medical and Vet-
erinary Sciences Tripos and of the Natural Sciences Tripos.
…

Standard University calculators CASIO fx 115MS marked in the approved fashion will be on sale at the beginning of Full
Michaelmas Term 2004 at £12 each as follows:

…
Department of Chemistry, Part IA laboratory preparation room (for the Natural Sciences Tripos); …
Department of Physiology (for medical and veterinary students);
Board of Examinations Office (for any subject), 10 Peas Hill, Tuesday, 5 October and Wednesday, 6 October from
9.30 a.m. to 12.30 p.m. and from 2.30 p.m. to 4.30 p.m.

Candidates are strongly advised to purchase calculators at the beginning of Full Michaelmas Term at the centres named
above. At other times calculators may be purchased from the institutions named above, and also from the Department of
Physics. Candidates already possessing a CASIO fx 100D, CASIO fx 115 (any version) or CASIO fx 570 (any version except
the fx 570MS) will be able to have it marked appropriately at no cost at one of the above centres.’
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1.1. Basic mathematics

If any of this (apart from the stuff in wavy lines) causes you problems, because for
some reason you haven’t done NST IA Elementary Maths, you should speak to your
Director of Studies about catching up to this level. Some of it isn’t used in the stats
course but is common in psychology (e.g. logarithms are used in psychophysics).

Fractions, percentages

05.0%5
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5 ≡≡

Notation to be familiar with

x∆ A small change in x (pronounced ‘delta-x’).

∑ x The sum of x (i.e. add up all the xs that you have).
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A more precise way of specifying summation: this
means ‘for every value of i from 1 to n take
the sum of xi’, or ‘x1 + x2 + x3 + … + xn’.
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Logarithms (a summary) — though not needed for IB statistics
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Calculus

If f(x) is some function of x, then the function giving the gradient of f(x) is the first

derivative of f(x) with respect to x, written variously )()( xf
dx

d
fxf ==′ � . If f(x) is

some function of x, then the area under the curve of f(x) is given by the integral of

f(x) with respect to x, written dxxf∫ )( . This is called the indefinite integral, because

it doesn’t specify which parts of the curve we want the area under. The area under

the curve f(x) from x = a to x = b is given by the definite integral dxxf
b

a∫ )( .
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1.2. Basic terminology

Variables and measurement

When we measure something that can vary, it is termed a variable. We can distin-
guish between discrete variables, which can only take certain values (e.g. in mam-
mals, sex is a discrete variable which can take one of the two values male and fe-
male), and continuous variables, which can take any value (such as height).

We can also distinguish between quantitative data and frequency data (also called
categorical or qualitative data). Height is measured (quantified), and is therefore
quantitative. If we count the number of males and females in the room, each person
falls into one category or the other, and the data we end up with are frequencies (e.g.
there are 26 males and 29 females).

While we’re at it, we can also distinguish several types of measurement scale.
Nominal scales aren’t really ‘scales’ at all, they’re categories (e.g. male/female,
Labour/Conservative/Lib Dem). The categories are different, but the nature of their
difference isn’t relevant. Ordinal scales rank things, but do not specify how ‘far
apart’ they are on a scale. For example, in the Army a lieutenant ranks lower than a
captain, who ranks lower than a major; however, it doesn’t make sense to ask
whether a major is more or less above a captain than a captain is above a lieutenant.
Interval scales have meaningful differences; 10°C is as far above –10°C as 40°C is
above 20°C. However, interval scales do not have a meaningful zero point (0°C is
not the ‘absence’ of temperature), so we can’t say that 40°C is ‘twice as hot’ as
20°C. Ratio scales have a true zero point. 40 K is twice as hot as 20 K (because 0 K
is the absence of heat); 3 m is twice as far as 1.5 m.

Frequently we come across a variable that can take many values. For example, sup-
pose we have a group of 30 people and we want to know something about their
heights. We might call X the variable that represents their height. We’ll be able to
make 30 different measurements of X; we might call them X1, X2… X30. Each meas-
urement is a single observation drawn from our variable. (Variables are often re-
ferred to by upper-case letters, such as X. Individual values of a variable are referred
to by corresponding lower-case letters, such as x, or by the upper-case letter with a
subscript, such as X1, X2, Xi, or by the lower-case letter with a subscript, such as x1,
x2, xi.)

Populations and samples

Taking this a step further, we can distinguish populations from samples. If all we
want to know is the height of our 30 people, we can measure it and that’s the end of
the matter. Our measured sample is the same as our total population. But very often,
we want to estimate something about a population by measuring a sample of that
population that is very far from being the whole population. For example, if we want
to know the height of 20-year-old human males in general, then we’d be unable in
practice to measure the whole population, but we could measure 30 male 20-year-
old Cambridge psychology undergraduates. This would be convenient, and we
would get a number that would be a definitive measurement of our particular set of
subjects, but would also be an estimator of the height of all 20-year-old male Cam-
bridge undergraduates, and an estimator of the height of all 20-year-old male hu-
mans. However, it wouldn’t necessarily be a very good estimator of the latter — the
sample may not be very representative of the whole population (average height in
the UK is shorter than in Germany but taller than for Japan) and, more importantly,
may be systematically different from the population mean (university students might
be taller than similarly-aged UK males in general). The latter is called bias. If we
want to obtain a sample that is likely to be a good estimator of the whole population,
we should draw a random sample — one where every member of the population
has an equal chance of being picked to be in our sample. Studies based on nonran-
dom samples may lack generality (or external validity) — so studying the effects
of a potential memory-enhancing drug on Cambridge students might tell you a lot
about what it’ll do to other university students, but not the adult population as a
whole.
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Descriptive and inferential statistics

‘Statistics’ itself can mean a couple of things. Descriptive statistics is the business
of describing things, you’ll be shocked to learn; newspapers are full of it (‘Hen-
man’s average serving speed was X…’). In research, it also includes the business of
looking at the distribution of your data (‘is there an even spread of ability in my
subjects or do I have a high-performing subgroup and a low-performing sub-
group?’). The job of having a look at the distribution of a data set before analysing it
in detail is called exploratory data analysis (EDA), a set of techniques developed
by a statistician called Tukey. Inferential statistics is the business of inferring con-
clusions about a population from studies conducted with a sample. When we meas-
ure an attribute (such as height) from a whole population, we’ve measured a pa-
rameter of the population. If we measure the same thing with a sample, we’ve
measured a statistic of the sample. So inferential statistics is also the business of in-
ferring parameters from statistics (in this specialized sense). We tend to use Greek
letters for parameters, such as µ and σ, but Roman letters for statistics (such as x
and s).

Exerting control: independent and dependent variables, between- and within-subject designs

If we manipulate or control a variable, it is termed an independent variable. We
might test the reaction times of a group of people having given them one of three
different doses of a drug; drug dose would then be a (discrete) independent variable.
We might want to know how the drug’s effect depends on their body weight; body
weight would then be a (continuous) independent variable. The thing that we meas-
ure is the dependent variable, in this case reaction time.

When we come to manipulate independent variables, we must consider randomness,
just as we do when we choose samples from populations. If we are going to give our
drug to some of our subjects and no drug to other subjects, we must consider several
factors. First, we probably do not want the subjects to know whether they are re-
ceiving the drug or not, because this knowledge might in some way affect their per-
formance; we would therefore give the ‘non-drug’ group a placebo (Latin for ‘I shall
please’ — a sugar pill given by doctors to placate patients they think don’t need
drug treatment). The groups should be unaware or ‘blind’ to whether they receive
drug or placebo; ideally, the person running the experiment should also be unaware,
so he/she can’t bias performance in any way. This would make the study a double-
blind, placebo-controlled study. However, we must also make sure that our drug
group does not differ from the placebo group in some important way. If the drug
group were male and the placebo group were all female, any potential effects of our
drug would be confounded with the effects of the subjects’ sex; our study would be
uninterpretable; it would not have internal validity. Similarly, if the subjects who
are going to receive the drug have better reaction times to begin with than the sub-
jects who are going to receive placebo, our results might not mean what we think
they mean. Ideally, we would like our two groups to be matched for all characteris-
tics other than the variable we want to manipulate (drug v. placebo). We can try to
craft matched groups by measuring things that we think are relevant (e.g. reaction
time on the task we’re going to use or a similar task, age, IQ, sex…). But we proba-
bly can’t explicitly match groups on every variable that might potentially be a con-
found; eventually we need a mechanism to decide which group a subject goes in,
and that method should be random assignment. So in our example, if we have
plenty of subjects, we could just randomly assign them to the drug group or the pla-
cebo group. Or we could match them a bit better by ranking them in order of reac-
tion time performance and, working along from the best to the worst, take pairs of
subjects (from the best pair to the worst pair), and from each pair assign one to the
drug group and one to the placebo group at random. Random assignment takes care
of all the factors you haven’t thought of — for example, if your subjects are all go-
ing to do an IQ test in your suite of testing rooms, you should seat them randomly,
in case one room’s hotter than the others, or nearer the builders’ radio outside, or
whatever. Common confounding factors it is always worth thinking about are time
and who collects the data.
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If you’re not in full control of the independent variable, your conclusions may be
limited. For example, suppose you find your drug improves reaction-time perform-
ance in people whose (pre-drug or ‘baseline’) performance was bad, but not in peo-
ple whose baseline performance was good. You might conclude that your drug im-
proves performance up to some sort of ceiling. However, suppose that all your ‘good
performers’ were women and all the ‘bad performers’ were men. In that case, you
can’t distinguish a performance-dependent effect from a sex-dependent effect.

So far, we’ve been talking about between-subjects designs, in which you do one
thing to some subjects (e.g. giving them drug) and another to others (e.g. giving
them placebo). A very powerful method that you might consider is to use a within-
subjects design, in which every person gets tested on drug and on placebo, at sepa-
rate times. The two types of design require different statistical analysis, which we’ll
discuss later — basically, in a within-subjects design, two measurements from the
same person are related/similar in a way that two measurements from two different
people aren’t, and you have to take account of that. Within-subjects designs are very
powerful, but they do have some problems to do with time: order and practice ef-
fects. If everybody does your task on placebo first and then on drug, and they get
better, the effect might be due to practice rather than the drug. There are other kinds
of effects that can arise if everyone experiences treatments in a particular order. You
must design your experiment to avoid such potential confounds.
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1.3. Plotting data: histograms

The first thing we should do before analysing any set of data is to look at it. For this,
it’s helpful to have some kind of graphical way of representing it. Here’s one.

Histograms and grouped histograms
Data set 1

36 37 38 38 39 39 39 40 40 40 40 41 41 41 42 42 42 43 43 43
43 43 44 44 44 44 44 45 45 45 45 45 45 46 46 46 46 46 46 46
46 46 46 46 47 47 47 47 47 47 47 47 47 48 48 48 48 49 49 49
49 49 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51
52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 56 56
56 56 56 56 56 56 56 56 57 57 57 57 57 57 57 58 58 58 58 58
58 58 58 58 58 58 58 59 59 59 59 59 59 59 59 59 59 59 60 60
60 60 60 60 60 60 60 60 60 60 61 61 61 61 61 61 61 61 61 61
61 62 62 62 62 62 62 62 62 62 62 62 62 62 62 63 63 63 63 63
63 63 63 63 63 64 64 64 64 64 64 64 64 65 65 65 65 65 65 65
65 66 66 66 66 66 66 66 66 66 67 67 67 67 67 67 67 67 67 67
67 67 67 67 67 68 68 69 69 69 69 69 69 69 69 69 69 70 71 71
71 71 72 72 72 72 72 72 72 72 73 73 74 74 74 74 74 74 75 75
76 76 76 76 77 77 78 78 78 79 79 80 80 80 81 81 82 83 83 83
84 85 86 88 90 94 94 95 95 98 104 104 125

Here we have a large list of measurements of something (it doesn’t matter what), but
we don’t get much sense of the distribution. A histogram plots the frequency with
which observations fall into a particular category. If there’s a category for each pos-
sible value of the observation, we get a histogram like that on the left of the figure
(above); this is rather silly. If the categories are made a bit bigger, we get a histo-
gram like that on the right (below). These allow us to visualize the data readily and
we get a sense of its central tendency (most observations are around the 45–70
range), the distribution (observations are clustered around the left-hand side with a
‘tail’ to the right), and any extreme values or outliers (there are a couple of obser-
vations that are much higher than the others).

Left: Frequency histogram. The x axis (abscissa) shows values or categories; the y axis (ordinate) shows the frequency
with which an observation fell into the appropriate category. This histogram looks rather ‘noisy’ because there are too
many categories. Right: Histogram with data grouped in more sensible categories. The same data as on the left. Each
category (on the x axis) represents an interval. In this example, the value printed on the x axis is the midpoint of the
interval; thus, ‘45’ denotes those values falling into the range 42.5–47.5 (this is just done to save a bit of space).
Choose your own interval size to make the histogram look sensible — √√√√n categories is often a good choice when then
are n observations. If you ever choose to make the intervals not all equal in width (you might call this asking for trou-
ble), you should make the area of each bar proportional to the number of observations, rather than the height.
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1.4. Measures of ‘central tendency’ — taking the average
Data set 2

12 18 19 15 18 14 17 20 18 15 17 11 23 19 10

Let’s take a set of 15 numbers (above). Where’s the ‘middle’ or the ‘average’? There
are several ways we might answer this question. The mode is the value that occurs
most commonly — in this case, 18. If we wanted to be formal, we could say that
these data are from a variable we measured called X. We could therefore say that
Mo(X) = 18. If there are two modes and they’re in some sense ‘adjacent’, we might

use the mean of the two, 
2

21 MoMo +
. If they’re far apart, then the distribution is

bimodal and we’d report both modes. Why use the mode? It can be applied to
nominal (categorical) data. It isn’t affected by extreme scores. It may be the most
meaningful; if you want to buy a job-lot of shoes that are all the same size, you
should buy shoes that are the modal size of the population you’re going to sell them
to. By definition, for an observation xi taken at random from a variable X, P(xi =
mode) > P(xi = any other score). Why might you not use it? If your categories are
not particularly meaningful, nor will be your mode. It is also less amenable to
mathematical analysis than the mean.

The median is the value that’s in the middle if we lined all the values up in order.
(More precisely, it’s the value at or below which 50% of the scores fall when the
data are arranged in numerical order, as below.) Here, it’s 17. This is written Med(X)
= 17, or sometimes x~ = 17.

Data set 2, reordered
10 11 12 14 15 15 17 17 18 18 18 19 19 20 23

This was easy to find, because we had an odd number of observations. If we had an
even number of observations then we’d add up the two closest to the middle and di-
vide by two:

Data set 3
10 11 12 14 15 15 17 17 18 18 18 19 19 20 21 23

the two middle values
The median is (17+18) ÷ 2 = 17.5

Why use the median? Like the mode, it isn’t affected by extreme scores (‘outliers’).
For example, the median number of legs on people in Britain is 2, but the mean is
not. However, it is also less amenable to mathematical analysis than the mean.

The mean is most people’s idea of the ‘average’. For a sample with n observations
x1, x2, … xn, the sample mean of X is written x  and calculated as follows:

n

x

n

x
x

n

i
i ∑=

∑
= =1

(The two notations are simply different ways of saying ‘sum all of the observations
and divide by the number of observations.) The mean of data set 2 above is 16.4.
The population mean is written µ (but we don’t normally measure this directly, as
discussed earlier). The mean of a given sample may not match the population mean
(measure ten tuna fish — is the mean of your sample identical to the mean of all the
tuna in the world, or have you caught tuna that are slightly bigger/smaller than av-
erage?) — but on average, if you took a lot of samples, the average of all the sample
means would be the same as the population mean. We say the sample mean is a
good estimator of the population mean (in fact, it’s the best estimator).

The mean has certain disadvantages. It is influenced strongly by extreme values (try
changing just one datum to 10,000 in the data set above and recalculating the mean).
There may well be no individual datum whose value is the same as the mean. Inter-
preting it requires some justification that the underlying data is being measured on
an interval scale. However, it is eminently amenable to mathematical analysis and
has certain other properties which make it the most widely-used measure of central
tendency; for example, it includes information from every observation.
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1.5. Measures of dispersion (variability)

Knowing a measure of central tendency doesn’t tell us all we need to know about a
set of data. Two data sets can have the same mean but very different variability —
for example, {9,10,11} and {5,10,15} both have a mean of 10. It’s often very im-
portant to have a measure of variability; there are several.

Range

This is simply the distance from the lowest to the highest point. The range of
{9,10,11} is 2; the range of {5,10,15} is 10. The range is simple, but is easily dis-
torted by extreme values.

Interquartile range

We talked about this when considering boxplots. It is the range of the middle 50% of
observations; it is the distance between the first and third quartiles (the 25th and 75th

percentiles). This is not distorted by extreme values; in fact, it may not pay enough
attention to values at the edge of a distribution!

The average deviation… is approximately zero and therefore useless.

We could measure how much each observation, xi, deviates from the mean, x , and
take the average of each deviation. However, since some deviations will be positive
and an equal number will be negative, the average deviation is about zero.

The mean absolute deviation… nobody uses.

One stage further: we take the deviation from the mean for each observation, and
take its absolute value (dropping any minus sign), i.e. |x|xi − . We then take the

mean of these values:

n

xx
dam i∑ −= ||

...

Though this one makes some sense, nobody uses it. Instead, they use the variance,
the standard deviation, and the standard error of the mean. We’ll cover the last
of these when we look at difference tests, but we’ll consider the other two here.

The variance — IMPORTANT

The population variance, σ2 is worked out as follows. Take each deviation from the
mean; square it (this eliminates negative values); sum all these together; divide by n,
the number of observations (this gives the average squared deviation per observa-
tion).

n

xi
X

∑ −
=

2
2 )( µσ

However, since we rarely measure whole populations, we rarely use the population
variance. Instead, we usually measure samples of the population (and therefore es-
timate the population variance from a sample variance). The sample variance, s2 is
just the same except we divide by n–1, not n. The formula on the far right is one
that’s mathematically identical but a bit easier to use for calculations by hand.
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The standard deviation (SD) — IMPORTANT

The standard deviation (SD) is the square root of the variance (so it’s sort of an av-
erage deviation from the mean). So the population standard deviation, σ is

n

xxi
XX

∑ −
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2
2 )(σσ
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and the sample standard deviation, s is
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If the data are normally distributed (see below), 68% of observations fall within one
SD of the mean, and 95% of cases fall within 2 SD. For example, if the age of a
group of subjects is normally distributed, and the mean age is 45 with a standard de-
viation of 10, then 95% of the cases would be between 25 and 65.

Some calculators refer to the population SD as σn and the sample SD as σn–1.

The coefficient of variation (CV) — not often used

The coefficient of variation is the standard deviation divided by the mean:

x

s
CV X=

The standard deviation often increases with the mean. For example, if you rate
something on a scale with a range of 0–10 (perhaps with a mean of 5) then the
(population) SD can’t be bigger than 5. If your scale was 0–100, with a mean of 50,
your SD could be as high as 50. By dividing the SD by the mean, the CV becomes
independent of this sort of thing. But the CV is rarely used.

Discrete random variables, treated formally

(A-Level Further Maths.) A random variable (RV) is a measurable or countable
quantity that can take any of a range of values and which has a probability distri-
bution associated with it, i.e. there is a way of giving the probability of the variable
taking a particular value. If the values an RV can take are real numbers (i.e. an infi-
nite number of possibilities) then the RV is said to be continuous; otherwise it is
discrete. The probability that a discrete RV X has the value x is denoted P(x). We
can then define the mean or expected value:

∑= )(][ xxPXE

and the variance:

( )[ ] ( )∑ −=−= )(][][][ 22 xPXExXExEXVar

( ) [ ] ( )2222 ][][)( XEXEXExPx −=−∑=
and the standard deviation:

][2 XVar=σ

Why is the sample variance calculated differently from the population variance?

What’s all this ‘divide by n–1’ business? Suppose we have a large population and
we know its mean (µ) and variance (σ2) precisely (they are parameters; see above).
If we were to take an infinite number of samples, each containing n observations, we
can calculate statistics of each sample. For example, we can calculate the mean, x ,
as usual, for each sample. We would like the sample mean x  to be an unbiased es-
timator of the population mean µ (i.e. we’d like x  to be the same as µ, on average),
and it is. However, this isn’t so simple for the variance. If we used the (wrong) for-
mula for the sample variance

n

xx∑ − 2)(

we’d find that, on average, we’d underestimate σ2 — our estimator is biased.

(a) Demonstration

When we calculate the variance, we calculate a whole load of values of 2)( xx − .

These are called summed squared deviations from the mean, or summed squared
errors (SSE). Suppose we have a population whose mean we know to be zero. Sup-
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pose that we take three samples and find that they’re {1, –4, 3}. The SSE is (1 – 0)2

+ (–4 – 0)2 + (3 – 0)2 = 26, whether we use the population mean or the sample mean
to calculate it, because for this particular sample the sample mean (0) happened to be
the same as the population mean (0). But suppose it wasn’t; suppose our sample was
{1, –1, 2}, which has a sample mean of 2/3. Then if we calculated the SSE around
the population mean, it’d be (1 – 0)2 + (–1 – 0)2 + (2 – 0)2 = 6. But if we calculated
the SSE around the sample mean, it’d be (1 – 2/3)

2 + (–1 – 2/3)
2 + (2 – 2/3)

2 = 4.67.
For a given sample, the SSE calculated using the sample mean will always be
smaller than (or equal to, but never greater than) the SSE calculated using the popu-
lation mean. Since we divide the population SSE by n to get the population variance,
if we divide the sample SSE by n we shall get something that on average is smaller
than the population variance. Some complicated maths is needed to tell us how much
smaller, but it turns out that on average we’ll be wrong by a factor of (n–1)/n. So if
we divide our SSE by n–1 instead of n, we’ll get the right answer.

(b) Explanation: degrees of freedom

The difference between calculating the sample variance and the population variance
is that when we calculate the sample variance, we already know the mean, but when
we calculate the sample variance, we have to estimate the mean from the data. This
leads us to consider something called degrees of freedom (df). Let’s use an exam-
ple. Suppose you have three numbers: 6, 8, and 10. Their mean is 8. You are now
told that you may change any of the numbers, so long as the mean is kept constant at
8. How many numbers are you free to vary? You can’t vary all three freely — the
mean won’t be guaranteed to be 8. You can only vary two freely; you need the third
to adjust the mean to 8 again. Once you’ve adjusted two, you have no control over
the third. If you had n numbers and had to keep the mean constant, you could only
vary n–1 numbers.

Let’s restate that in several ways, because people generally find it hard. Estimates of
parameters can be based upon different amounts of information.
• The number of independent pieces of information that go into the estimate of a

parameter is called the degrees of freedom (df).
• Alternatively, the df is the number of observations free to vary (as in our three-

numbers-and-a-mean example, above).
• Alternatively, the df is the number of measurements exceeding the amount ab-

solutely necessary to measure the ‘object’ (or parameter) in question. To meas-
ure the length of a rod requires 1 measurement. If 10 measurements are taken,
then the set of 10 measurements has 9 df.

• In general, the df of an estimate is the number of independent scores that go into
the estimate minus the number of parameters estimated from those scores as in-
termediate steps.

When we calculate σ2, we already know µ; we don’t use up any df calculating it, so
the denominator remains n. (In our example above, we knew the population mean
was 0, regardless of the numbers in our sample, so when we calculated the popula-
tion SSE we didn’t need to ‘use any of the sample data up’ in estimating the mean.)
But when we calculate s2, we must use up one df calculating the sample mean x , so
we only have n–1 df left (n–1 scores free to vary). Since the denominator is the
number of scores on which our estimate is based, it should reflect this restriction,
and be decreased by 1 — so in all cases we’re dividing the total variability by the
number of places (independent observations) it could have come from.
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(c) Proof

Neither of the explanations above is complete. The full proof that we’ll be out by a
factor of (n–1)/n unless we divide by n–1 rather than n is more complicated (see
Frank & Althoen, 1994, pp. 301-305; or Myers & Well, 1995, p. 592, or graduate
handouts at www.pobox.com/~rudolf/psychology).
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1.6. The normal distribution

Many things in nature are normally distributed. If we plot a histogram or a probabil-
ity distribution of them, the shape is something like that shown in the figure below: a
‘bell curve’. It might be people’s reaction times to respond to a race’s starting gun,
the number of barnacles found on a given area of rock, or the heights of French sol-
diers. Things that are normally distributed can have different means, and different
standard deviations (see examples below), but once we know the mean and the stan-
dard deviation, we know all there is to know about the way that they’re distributed.

Top left: a normal distribution, which we describe as N(µ,σ2) where µ is the mean and σ2 is the variance (σ is the stan-
dard deviation). Top right: the ‘standard’ normal distribution, which always has a mean of 0 and a standard deviation
of 1, and which is referred to by the letter Z. Both curves are perfectly symmetrical about the mean. Below: examples of
normal distributions with different means and SDs.

The normal distribution is sometimes called the Gaussian distribution (despite being
invented by de Moivre in 1733). Why is it important?

(1) Z scores

First, we can calculate how likely a particular measurement is to have come from a
particular population. The area under bits of a probability distribution curve
(such as the normal distribution) represents the probability or proportion of ob-
servations falling into a particular range. Suppose healthy people have a mean
plasma potassium concentration of 4.25 mM, with a standard deviation of 0.383
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mM, and that this is normally distributed. Since I’ve told you that about 95% of the
population fall within 2 SD of the mean, we can work out that 95% of healthy peo-
ple have a potassium concentration in the range 3.5–5.0 mM. Furthermore, if a pa-
tient has a potassium concentration of 5.5 mM, we can work out the probability of
this concentration or higher being found in the healthy population. The way we do
that is as follows. It would be very tedious to work out the mathematical properties
of the plasma-potassium normal distribution, which we’d call N(4.25, 0.3832),
whenever we wanted to answer a question like this. It would certainly not be quick
with pen and paper. So we convert (‘transform’) our potassium score from a num-
ber from N(4.25, 0.3832), which we know nothing about, to a special distribution
called the standard normal distribution, which we write N(0,1) or Z, that we know
everything about. This is important and very easy: if x is our potassium measure-
ment, µ is our potassium mean, and σ is our potassium standard deviation, then

σ
µ−= x

z

In our example, z = (5.5 – 4.25)/0.383 = 3.26. We have converted our potassium
level of 5.5 mM to a Z score of 3.26. We can then use our tables of the standard
normal distribution (you’ve got a copy — see p. 123) to find out how likely a Z
score of 3.26 (or higher) is to have come from the standard normal distribution. This
is answering the same question as ‘how likely is a potassium level of 5.5 mM to
have come from the distribution of plasma potassium in healthy people?’ Our tables
tell us that we want the probability that Z ≥ 3.26, and that’s 1 minus the probability
that Z ≤ 3.26, which is 0.9994; so the answer to our question is 1 – 0.9994 = 0.0006.
In other words, it’s highly unlikely that a plasma potassium of 5.5 mM would be
found in a healthy population. Our patient’s probably not healthy — better watch it,
because if the potassium level goes too high, he’ll have a cardiac arrest.

Z scores carry information on their own, because you automatically know what
the mean and standard deviation are (they’re 0 and 1, respectively). Z scores tell
you how far a score is from the mean, in terms of the number of standard de-
viations: a Z score of +2.4 means ‘2.4 standard deviations above the mean’; a Z
score of –1.5 means ‘1.5 standard deviations below the mean’.

Extreme Z scores (big positive numbers or big negative numbers) are unlikely
to have come from the distribution in question.

Sometimes, information is presented in a normalized form. For example, IQ scores
are transformed to a distribution with a mean of 100 and an SD of 15; knowing this,
you can work out what proportion of the population have an IQ over 120.

(2) Assumptions of statistical tests

Second, many statistical tests assume that the data being tested are normally distrib-
uted. We will return to this point later.

(3) Confidence intervals

Third, we can work out confidence intervals for any measurement we make. We
saw an example above: we said that 95% of healthy people have a plasma potassium
concentration in the range 3.5–5.0 mM. That is the same as saying the 95% confi-
dence interval (CI) for healthy people’s potassium is 3.5–5.0 mM.

For any given set of data X, we can work out 95% confidence intervals as follows:
1. Calculate the mean, µµµµ, and standard deviation, σ.
2. The Z scores that enclose 95% of the population are –1.96 and +1.96. Why?

Well, our tables (see p. 123) tell us that the area (probability) under the Z curve
to the left of z = –1.96, written, Φ(–1.96), is 0.025. Similarly, they tell us that
Φ(+1.96) = 0.975. Therefore the area under the normal curve between z = –1.96
and z = +1.96 is Φ(+1.96) – Φ(–1.96) = 0.95.

3. Z = (X – µ )/σ, therefore X = µ + Zσ. Therefore the X scores corresponding to Z
scores of ±1.96 are µµµµ ± 1.96 σ, the 95% confidence intervals.
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For our potassium example, we had a mean of 4.25 and an SD of 0.383; therefore,
our 95% confidence intervals are 4.25 – (1.96 × 0. 383) and 4.25 + (1.96 × 0. 383),
or 3.5 and 5.0. Try working out the 95% confidence intervals for IQ scores.

Deviations from normality

Not everything you measure will be normally distributed. Here’s a normal distribu-
tion and some non-normal distributions:

Figures illustrating bimodality and skew.

Continuous random variables; probability density functions

(A-Level Further Maths.) For a continuous random variable X, the probability of an
exact value x occurring is zero, so we must work with the probability density func-
tion (PDF), f(x). This is defined as

dxxfbxaP
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( x∀  means ‘for all values of x’). The mean or expected value E[X] is defined as
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The variance, Var[X] or V[X], is given by
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The cumulative distribution function (CDF, also known as the ‘distribution function’
or ‘cumulative density function’), F(a), is given by
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Definition of a normal distribution
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exf This distribution is often abbreviated to N(µ, σ2).

The standard normal distribution

The ‘standard’ normal distribution is N(0,1), i.e. a normal distribution in which µ =
0 and σ = σ2 = 1. A standard normal random variable is frequently referred to as Z.
The PDF is frequently referred to as )(zφ , and the CDF as )(zΦ . So
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Transforming any normal distribution to the standard normal distribution

As we’ve seen, if X is a normally-distributed random variable with mean µ and stan-
dard deviation σ, and Z is a standard normal random variable, then

σ
µ−= x

z
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1.7. Probability

How much probability do you have to know? Not very much. You need to know
what a probability is, what P(A) and P(¬A) mean, and preferably what P(B|A)
means. If you’re not keen on probability, you can skip the rest of this section and
move on to the logic of null hypothesis testing. If you’re a bit more capable mathe-
matically, you may like to read this section — probability is at the heart of statistical
testing and you’ll be streaks ahead of many researchers if you have a solid grasp of
probabilistic reasoning.

Basic notation in probability

)(AP probability of an event A

)( AP ¬ probability of the event ‘not-A’, the opposite of A.

This is variously written as ¬A, ~A or A .
)( BAP ∨ probability of A or B (or both) happening (the nota-

tion is like set union: ∪). Sometimes written
P(A or B).

)( BAP ∧ probability of A and B both happening (the notation
is like set intersection: ∩). Sometimes written
P(A, B) or P(A and B).

)|( ABP probability of B, given that A has already happened,
known as the conditional probability of B
given that A has already happened

Basic laws of probability

If P(A) = 0, then A will never happen (is impossible); if P(A) = 1, then A is certain
to happen. Probabilities are always in this range:

0 ≤ P(A) ≤ 1 [1]

Pick a card; there are 52 equally-likely outcomes; 13 are clubs, so P(♣) = 13/52:

P(A) =                              number of ways in which A occurs                         
number of ways in which all equally likely events, including A, occur

[2]

Either A happens or ¬A happens (I flip a coin, it either comes up heads or tails):

P(A) + P(¬A) = 1
P(¬A) = 1 – P(A)

[3]

Odds

Odds are another way of expressing probability: they’re the ratio of P(A) to P(¬A).
For example, Tiger Woods might be the favourite to win a tournament at odds of
9:5, often stated ‘9 to 5 on’ (= 9/5 = 1.8). This means that for every 14 times he
plays the tournament, he’d be expected to win 9 times and lose 5. If the event that
Tiger Woods wins is A and his odds are x, we can write

x
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So in the case of Tiger Woods, since x = 1.8, P(A) = 0.64. In general
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If the odds on a player were quoted as ‘3 to 1 against’, the odds on them losing are
3:1 so the odds on them winning are 1:3 (i.e. probability of them winning is ¼ =
0.25).

The rest of the basic laws of probability

If A and B are mutually exclusive events (⇒ 0)( =∧ BAP ) then

)()()( BPAPBAP +=∨ [4]

In the more general case,

)()()()( BAPBPAPBAP ∧−+=∨ [5]

If A and B are independent events — that is, the fact that A has happened doesn’t
affect the likelihood that B will happen, and vice versa: )|()( ABPBP =  and

)|()( BAPAP =  — then

)()()( BPAPBAP ×=∧ [6]

If I toss a fair coin and roll a fair die, the probability of getting a six and a head is
1/6 × 1/2 = 1/12. The probability of getting a six or a head or both is 1/6 + 1/2 – 1/12

= 7/12.

In the more general case:

)|()()( ABPAPBAP ×=∧ [7]

If I have a bag that initially contains 4 red marbles and 6 blue marbles, and I with-
draw marbles one by one, the probability of picking a red marble first (event A) and
a blue marble second (event B) is 4/10 × 6/9 = 4/15.

A bit more advanced: Bayes’ theorem

From [7],
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∧=
[8]

We also know, from [7],

)|()()()( BAPBPABPBAP ×=∧=∧

Therefore, from [8],
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This is the simplest statement of Bayes’ theorem. Suppose event A is discovering
an improperly-sealed can at a canning factory. We know there are k assembly lines
at which cans are sealed, and we’d like to know which one produced the faulty can.
Let’s call B1 the event in which assembly line 1 produced the faulty can, B2 that in
which line 2 produced the faulty can, and so on. What’s the probability that the can
came from line i?

We know that a faulty can must have came from one of the assembly lines:
)|()(...)|()()|()()( 2211 kk BAPBPBAPBPBAPBPAP +++=

or to write that in a shorter form:
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Therefore, from [9],
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[10]

So suppose there are three assembly lines; lines X, Y and Z account for 50%, 30%
and 20% of the total output. Quality control records show that line X produces 0.4%
faulty cans, Y produces 0.6% faulty cans, and Z produces 1.2% faulty cans. Using
Bayes’ theorem in the form of [10] will tell us that the chance our faulty can comes
from assembly line X is 0.32 (similarly, 0.29 for line Y and 0.39 for line Z).

Let’s take a simple, fictional example in which only two things may happen. Q. The
prevalence of a disease in the general population is 0.005 (0.5%). You have a blood
test that detects the disease in 99% of cases: P(positive | disease) = 0.99. However, it
also has a false-positive rate of 5%: P(positive | no disease) = 0.05. A patient of
yours tests positive. What is the probability he has the disease? A. We’d like to find
P(disease | positive). By [9],

)|( posdisP
)(

)|()(

posP

disposPdisP ×=

)|()()|()(

)|()(

disposPdisPdisposPdisP

disposPdisP

¬¬+
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05.0995.099.0005.0

99.0005.0

×+×
×=

= 0.09

So even though our test is pretty good and has a 99% true positive rate or ‘sensitiv-
ity’ (a 1% false negative rate) and a 5% false positive rate (a 95% true negative rate
or ‘specificity’), our positive-testing patient still only has a 9% chance of having the
disease — because it’s rare in the first place.

Bayesian inference

Suppose we have a hypothesis H. Initially, we believe it to be true with probability
P(H); we therefore believe it to be false with probability P(¬H). We conduct an ex-
periment that produces data D. We knew how likely D was to arise if H were true —
P(D|H) — and we knew how likely D was to arise if H were false — P(D|¬H). We
can therefore use Bayes’ theorem [9] to update our view of the probability of H:
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This can be expressed another way (Abelson, 1995, p. 42):
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or
posterior odds = prior odds × relative likelihood
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1.8. The logic of null hypothesis testing; interpreting p values

We will come across a range of statistical tests. Most produce a test statistic and an
associated p value; you will see these quoted in scientific journals time and time
again (like this: F2,47 = 10.7, p < .001… F3,18 = 4.52, p = .016… t60 = 1.96, p = .055).
They all work on the same principle: that of null hypothesis testing.

Null hypothesis testing approaches the questions we want to ask backwards. We
typically obtain some data. Let’s say we measure the weight of a hundred 18-year-
old women who are either joggers (50) or non-joggers (50). We would like to know
whether the mean weights of these two group differ. Obviously, it’s highly unlikely
that the means will be exactly the same. Suppose the joggers are slightly lighter on
average. How big a difference counts as ‘significantly’ different? The conventional
logic is as follows. Either the difference arises through chance, or there is some sys-
tematic difference (such as that jogging makes you thin, or that being thin encour-
ages you to take up jogging). Our research hypothesis (sometimes written H1) is
that the joggers are different from the non-joggers (that our two samples come from
different underlying populations). We’ll invent a corresponding null hypothesis
(sometimes written H0) that the observed differences arise purely through chance.
We’ll then test the likelihood that our data could have been obtained if this null hy-
pothesis were true. If this probability (the so-called p value) is very low, we will re-
ject the null hypothesis — chance processes don’t appear to be a sufficient explana-
tion for our data, so something systematic must be going on; we’ll say that there is a
significant difference between our two groups. If the p value isn’t low enough, we
will retain the null hypothesis (applying Occam’s razor — because the null hy-
pothesis is the simplest on offer) and say that the groups do not differ significantly.

The exact meaning of a p value

Let’s say we run a statistical test to examine whether these two groups differ. It pro-
duces a test statistic (such as a t value; we’ll consider how this works later) and a p
value — let’s say 0.01. What does this mean? For shorthand, let’s call D the event of
obtaining a set of data, H be the research hypothesis, and ¬H the null hypothesis.

• Correct: “If the null hypothesis were true [if it were true that there were no
systematic difference between the means in the populations from which the
samples came], the probability that the observed means would have been as dif-
ferent as they were, or more different, is 0.01. This being strong grounds for
doubting the viability of the null hypothesis, the null hypothesis is rejected.”

• Correct: “The probability of these data (or something more extreme) being ob-
served if the null hypothesis were true is 0.01.”

• Correct: P(D | ¬H) = 0.01.
• Wrong: “The probability that the null hypothesis is true is 0.01.”
• Wrong: “The probability that the results are a ‘fluke’ is 0.01.”
• Wrong: “The probability that the research hypothesis is false is 0.01.”
• Wrong: P(¬H | D) = 0.01.
• Wrong: P(¬H) = 0.01.
• Wrong: “The null hypothesis is disproved.”
• Wrong: “We have established the probability of the null hypothesis being true.”
• Wrong: “We know, if we decide to reject the null hypothesis, the probability

that we are making an error.”
• Wrong: “The probability that the null hypothesis is false is 0.99.”
• Wrong: “The probability that the research hypothesis is true is 0.99.”
• Wrong: P(H | D) = 0.99.
• Wrong: P(H) = 0.99.
• Wrong: “The research hypothesis has been proved.”
• Wrong: “We have established the probability of the research hypothesis being

true.”
• Wrong: “If the experiment were to be replicated, there is a 99% chance that a

significant result would again be found.” [To see why this is wrong, consider
the situation where you run an experiment and obtain p = 0.05 — just on the
threshold of ‘significance’, if we use the conventional α = 0.05. What is the
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chance of getting a ‘significant’ result again if you repeated or replicated the
experiment exactly? Well, half the time you’d expect a bigger effect and half
the time you’d expect a smaller effect. A bigger effect would give p < 0.05,
while a smaller effect would give p > 0.05. So the chance that the replicated ex-
periment would produce a ‘significant’ result would be 50%, not 95%. (See
Oakes, 1986, p. 18; Abelson, 1995, p. 75.)]

You will find countless web sites, articles, people, and even occasionally statistics
textbooks that make one or more of these mistakes (for details, see Abelson, 1995, p.
40). In one study, only 3% of academic psychologists answered correctly a series of
six true/false questions like the statements above (Oakes, 1986, p. 79).

It’s easy to think that all these statements are saying the same thing, but they’re not.
The main problem is understanding the difference between P(¬H | D), which you’d
really like to know, and P(D | ¬H), which is what statistical tests tell you. Compare
(1) the probability of testing positive for a very rare disease if you have it, P(positive
| diseased), with (2) the probability of having it if you test positive for it, P(diseased |
positive). If you think the two should be the same, you’re neglecting the ‘base rates’
of the disease: typically, the second probability is less than the first, as it’s very un-
likely for anybody to have a very rare disease, even those who test positive. Doctors
intuitively get this wrong all the time. Substitute in P(rich | won the lottery) and
P(won the lottery | rich)… the first probability is much higher, because winning the
lottery is so rare.

Bayes’ theorem and Bayesian statistics

The formal way to relate what we get from significance tests, P(data | ¬hypothesis),
to what we really want, P(hypothesis | data), is by using Bayes’ theorem (see p. 19).
This is perhaps the simplest expression to use in this case:
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For example, suppose that a climatologist calculates that a 1°C rise in temperature
one summer had a probability of 0.01 of occurring by chance (p = 0.01). What does
that tell us? It does not tell us that there’s a 99% probability that it was due to the
greenhouse effect. It does not even tell us that there’s a 99% probability that it was
not due to chance. The Bayesian approach would be this: suppose that reasonable
people believed the odds were 2:1 in favour of the greenhouse hypothesis (H) before
this new evidence was collected — these are the prior odds. Now, we’ve been told
that P(D|¬H) = 0.01. We need to know the probability that a 1°C temperature rise
would occur if the greenhouse hypothesis were true; that is, P(D|H). Suppose this is
0.03. Then the relative likelihood is 0.03/0.01 = 3. So the posterior odds are 2 × 3 =
6 in favour of the greenhouse hypothesis; odds of 6:1 equate to P(H|D) = 6/7 = 0.86.

Type I and Type II error; power

Although p values speak for themselves in one sense, it’s very common for re-
searchers to use them as a yes/no decision-making device. I won’t debate the wis-
dom of this now, but this is how it works. A threshold probability, usually called α
(alpha), is chosen; typically, α = 0.05. If a given p value is less than α, the null hy-
pothesis is rejected; if p ≥ α, the null hypothesis is retained. You might see this logic
described in papers like this: ‘the two groups were significantly different (p < 0.05),’
or ‘a significance level of α = 0.05 was adopted throughout our study… the two
groups were significantly different.’

Obviously, if α = 0.05, then there is a 0.05 (one in twenty) chance that an effect we
label as ‘significant’ could have arisen by chance if the null hypothesis were true. If
this happens, and we accidentally decide that a effect was not attributable to chance
when actually it did arise by chance, we’re said to have made a Type I error. The
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probability of making a Type I error is α. Conversely, the probability of correctly
not rejecting the null hypothesis when it is true is 1 – α.

The opposite mistake is failing to reject the null hypothesis when it is false — that
is, ascribing your data to chance when they actually arose from a systematic effect.
This is called a Type II error; its probability is labelled β (beta). Conversely, the
probability of correctly rejecting the null hypothesis when it is in fact false is 1 – β;
this is called the power of the test. If your power is 0.8, it means that you will detect
‘genuine’ effects with p = 0.8.

True state of the world
Decision H0 true H0 false
Reject H0 Type I error

p = α
Correct decision
p = 1 – β = power

Do not reject H0 Correct decision
p = 1 – α

Type II error
p = β

One-tailed and two-tailed tests

There’s one other thing we should consider when we talk about α and Type I error.
Let’s go back to the example of our joggers. Presumably our leading hypothesis is
that joggers will be thinner than non-joggers, so we want to be able to detect if the
mean weight of joggers is less than that of non-joggers, and we might choose α =
0.05. But what will we do if the joggers actually weigh more? Well, this depends on
what kind of test we decided on. If we were only interested in the difference be-
tween the groups if the joggers weighed less, we would use a one-tailed (direc-
tional) test, so that if there was less than a 5% probability that chance alone could
have produced a difference in the direction we expect then we would reject the null
hypothesis. But if we want to be able to detect a difference in either direction, we
must use a two-tailed (nondirectional) test. In that case, we must ‘allocate’ our 5%
α to the two ways in which we could find a difference (joggers weigh more; joggers
weigh less) — so we’d allocate 2.5% to each tail of the distribution. This is shown

One-tailed and two-tailed tests. Left: what it means to
declare a Z score of –2.667 to be ‘significant’, using a
one-tailed Z test (α = 0.05). For this example, we are only
interested in Z scores that are less than zero. The score
being tested is in the extreme lower 5% of the distribution,
so the probability of obtaining a score that extreme (or
more) if the null hypothesis were actually correct (if the
distribution shown was the true distribution) is less than
5%. Below: the difference between one- and two-tailed
tests is that the criterion (or critical) values must be al-
tered. If the deviation can be either way (less than or
greater than the value predicted by the null hypothesis),
then, in order to reject the null hypothesis no more than
5% of the time when it is actually true, we must allocate
2.5% to each ‘tail’ of the distribution (and thereby alter
the critical values).
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in the figure (plotted on a normal distribution; you might like to think of it in terms
of the joggers and the potassium examples). In general, unless you would genuinely
not be interested in both possible outcomes (quite a rare situation), you should use a
two-tailed test. What you must not do is to run a one-tailed test (α = 0.05), find a
non-significant result, then look at the data, realize the difference is in the other di-
rection to the one you predicted, and decide then to do a two-tailed test (α = 0.05) —
because what you have actually done is to allocate 5% to one tail, then allocate an-
other 2.5% to the other tail, meaning that you have actually run a sort of asymmetric
two-tailed test with a total α of 0.075 (7.5%) (see Abelson, 1995, p. 58). Decide
what test you want in advance of analysing the data.

The danger of running multiple significance tests

Every time you run a test, if the null hypothesis is true, you run the risk of making a
Type I error with probability α. So if you run n tests, you have n chances to make a
Type I error. What’s the probability that you don’t make any Type I errors when you
run n tests? Well, the probability that you don’t make a Type I error on each test is 1
– α, so the probability you make no Type I errors when you run n tests is (1 – α)n. So
the probability that you make at least one Type I error when you run n tests when
the null hypothesis is true is 1 – (1 – α)n.

If you set α = 0.05, you must expect on average one in every 20 tests to come up
‘significant’ when it isn’t (Type I error) if the null hypothesis is in fact true. If you
run 20 tests and the null hypothesis is true, the probability of making at least one
Type I error is 1 – (1 – 0.05)20 = 0.64. This is why running lots of tests willy-nilly is
a Bad Idea — eventually, something will ‘turn up significant’, but that doesn’t mean
it really is.

This doesn’t mean that 5% of all your significant results are ‘wrong’. You can only
make Type I errors when the null hypothesis is true! In practice, on some occasions
the null hypothesis will be false, so we can’t make a Type I error. Therefore, some-
thing less than 5% of our ‘significant’ results will be Type I errors; α is the maxi-
mum Type I error rate.

Is there a difference between p = 0.04 and p = 0.0001?

Yes. Whether you look on p values as expressing the degree of confidence with
which you reject the null hypothesis, or as information you can use to update your
opinions of the world in Bayesian fashion, p values have real meaning. Some people
will argue that so long as p < α you needn’t report the actual p value, but this ap-
proach takes information away from the reader.

p = 0.06

What happens if you run a well-designed experiment in which you give a treatment
to one group of people and not another, measure some aspect of their performance,
test for a difference between your groups and get p = 0.06? You could do one of
several things. (1) Re-run your experiment with more subjects; perhaps you did not
have enough statistical power to detect the size of effect that your treatment pro-
duced. You might have been spared this embarrassment if you had tried to calculate
your statistical power in advance; you might then have realised your experiment was
under-powered in the first place. (2) Report your experiment as showing a ‘trend’
towards an effect; it’s not like p = 0.04 is somehow magically better than p = 0.06,
after all. (3) Use α = 0.1 rather than α = 0.05. However, not only will journal editors
definitely be upset with this (for no real reason — there’s nothing magical about α =
0.05), but it is highly dubious to change your α only after you’ve run your experi-
ment — after all, you’re only doing it to shore up a not-quite-significant result, and
you’re therefore distorting the results. You should have chosen α in advance. Simi-
larly, it is very dubious to add subjects to your original experiment ‘until it reaches
significance’ — you’re only doing this because your original data was ‘near’ signifi-
cance and you want it to be significant. If you had a compelling reason to want your
treatment to have no effect, you wouldn’t be doing this — so you’re biasing the ex-
periment by this kind of post-hoc fiddling. (4) Retain the null hypothesis; see below.
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What does ‘not significant’ mean?

What happens when you want to prove that a hypothesis is not true? Suppose your
contention is that jogging doesn’t affect body weight; you take two identical groups
of people, set half of them jogging for a couple of months while the rest eat pies, and
measure their weights. You find no difference between the groups (p = 0.12). What
does this mean? It means that you have failed to reject the null hypothesis — there is
a fair chance (0.12) that your observed difference could have arisen by chance alone.
It does not mean that you have proven the null hypothesis. Take an extreme exam-
ple: your null hypothesis is that all people have two arms. Just because the next
5,000 people you meet all have two arms (failure to reject the null hypothesis) does
not mean that you have proved the null hypothesis.

You can do two things when you fail to reject the null hypothesis: (1) view it as an
inconclusive result, or (2) act as if the null hypothesis were true until further evi-
dence comes along.

Really, you should consider your level of α and β to meet the needs of your study. If
you want to avoid Type I errors (e.g. telling someone they have an ulcer when they
don’t), set α low. If you want to avoid Type II errors (e.g. telling them to go home
and rest when they’re about to die from a gastric haemorrhage), set α higher. The
other thing you can do when you’re designing an experiment is to make sure the
power is high enough to detect effects with a reasonable probability — such as by
using enough subjects. If you take two people and make one jog, you’ll never find a
‘significant’ difference between the jogging and non-jogging groups, but that
doesn’t mean people should believe you when you say that jogging doesn’t reduce
weight. If you used half a million people and still found no effect, your study might
command more attention.

A statistical fallacy to avoid: A differs from C, B doesn’t differ from C…

If you test three groups and find that A is significantly different from C, but B is not
significantly different from C, do not conclude that A is significantly different from
B. To see why, imagine that A is smaller than B, and B is smaller than C. Then we
might find a difference between A and C (p = 0.04) and no difference between B
and C (p = 0.06) — but the p values are just on either side of our threshold of 0.05
and A and B might be nearly the same! Making this conceptual mistake is quite
common.

Similarly, just because A isn’t significantly different from B, and B isn’t signifi-
cantly different from C, doesn’t mean that A isn’t significantly different from C.
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1.9. For future reference… how the different statistical tests fit together

Overview of statistical tests

This flowchart (based on Howell, 1997, p.11) should help you fit the various statistical tests we’ll cover into a coherent
framework. It’s NOT intended to be a prescriptive ‘use this test in this circumstance’ chart — once you understand
what a test does, you can apply it whenever you feel it’s appropriate. And DON’T TRY TO LEARN IT! Tests with
dotted lines around them aren’t covered in the IB course.

Descriptive statistics in Excel — relevant functions (see Excel help for full details)

Excel does basic analysis (especially if you switch on the Analysis ToolPak, available in Excel 97 from the Tools →
AddIns menu, and thereafter from Tools → Data Analysis) and can generate quite good graphs, with a little playing. But
in the exams you’ll be required to do basic statistical tests with a calculator, so don’t become reliant on a computer yet.

AVERAGE(…) Mean x of a group of cells; e.g. AVERAGE(A1:A6) gives the mean of cells A1, A2… A6.
MEDIAN(…) x~ or Med(X)
MODE(…) Mo(X)
COUNT(…) n
VARP(…) population variance σ2

VAR(…) sample variance s2

STDEVP(…) population standard deviation σ
STDEV(…) sample standard deviation s
STANDARDIZE() converts a value X into a standardized normal value Z (you have to supply X, µ and σ).
NORMSDIST() the standard normal cumulative distribution function, )(zΦ . Give it a z score and it returns a

cumulative probability, i.e. ∫=Φ=≤ ∞−
z dttzzZp )()()( φ .

NORMSINV() the inverse standard normal cumulative distribution function, )(1 z−Φ . Give it a cumulative

probability p(Z ≤ z) and it’ll tell you the z score associated with that probability.
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1.10. Examples 1: background, normal distribution

Q1. Given that a variable X is distributed normally with mean value 23.5 and standard deviation 3.0, find the probability
that:

(a) X < 28
(b) X < 17
(c) X > 30
(d) 26 < X < 28
(e) X differs from its mean by more than 6.0

Q2. IQ scores are derived in such a way that the mean for the population is 100 and the standard deviation is 15. In a
population of 60 million, how many have IQs

(a) >145
(b) <80
(c) within one standard deviation of the mean?

Q3. African meerkats (Suricata suricatta) have a mean height of 30 cm with a variance of 4 cm. Their heights are nor-
mally distributed.

(a) What is the standard deviation of the heights of African meerkats?
(b) What proportion of meerkats are between 30 and 31 cm tall?
(c) If you took a thousand randomly-selected meerkats, how many would you expect to be shorter than 28.5

cm?
(d) What are the 95% confidence intervals for meerkat heights (the heights, centred around the mean, within

which 95% of meerkat heights fall)?
(e) Pilchard the meerkat is 33 cm tall. What is the probability that a meerkat of Pilchard’s height (or greater)

could come from the population of African meerkats?
(f) What is the probability that a meerkat whose height is less than Pilchard’s could come from this population?
(g) What is the approximate probability that a meerkat whose height is exactly that of Pilchard’s could come

from this population?

Q4. A researcher reporting the results of a functional imaging study states that blood flow in the left cerebellum de-
creased while subjects thought about music. The researcher calculated this change to be equivalent to a Z score of –2.4.

(a) What is the probability that this Z score (or one still more extreme in the same, negative, direction) could
have arisen by chance?

(b) What is the probability that a Z score of ≥ +2.4 or ≤ –2.4 could have arisen by chance?
(c) If mean left cerebellar blood flow is 50 ml per minute with a standard deviation of 5 ml per minute while the

subjects were resting, what was the left cerebellar blood flow while the researcher’s subjects were thinking
about music?

(d) If the researcher had simultaneously scanned 100 areas of the brain and calculated Z scores for each of them
(by comparing ‘music’ blood flow to ‘resting’ blood flow in each case), what is the probability of obtaining
at least one Z score at least as extreme as ±2.4 if listening to music did not in fact affect brain blood flow at
all?

Q5. A traveller one day was making his way
through a woods both wild and deep.

The road split in two and he muttered, ‘Mon Dieu!
Where in the world shall I sleep?’

To the south lay an inn most noted for sin,
but a constable shrewd and upright.

To the north (said the sign), a village benign,
a safer abode for the night.

The village, it seemed, was a traveller’s dream,
for thieves chose the inn, as a rule,

But the sheriff in town had earned wide renown
as a lax and incompetent fool.

Suppose that the probability of being robbed is .60 at the inn and .20 in the village. On the other hand, the probability
that the constable at the inn will recover the traveller’s money is .70, but the probability that the sheriff in the village
will recover the traveller’s money is only .10. Which is the better choice?
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2. Correlation and regression

Objectives

We’ll examine two ways to examine the relationship between two variables — cor-
relation and regression. They’re conceptually very similar.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

2.1. Scatter plots

Suppose you measure two things about a group of subjects — IQ and income, say.
How can we establish if there’s any relationship between the two? The first thing to
do is to draw a scatter plot of the two variables. To do this, we take one of our vari-
ables (e.g. IQ) as the x axis, and the other as the y axis. Each subject is then plotted
as one point, representing an {IQ, income} pair. This might show us any of several
things:

Fictional scatterplots. A: positive correlation between IQ and income. As IQ goes up, income goes up. B: negative cor-
relation between IQ and income. As IQ goes up, income goes down. C: no relationship between the two. D: there’s a
relationship, but it’s not a straight line (it’s not a linear relationship). People with high IQs and people with low IQs
both earn less than those with middling IQs.

It’s always worth plotting the data like this first. However, for our next trick we’d
like a statistical way to work out if there’s a relationship, how big it is, and in what
direction it goes. Please note that we’ll only talk about ways to establish things
about a linear relationship between two variables; if it’s non-linear (e.g. the bottom
right figure), it’s beyond the scope of this course.

2.2. Correlation

We will call the degree to which they are related the correlation between the two
variables. If Y gets bigger when X gets bigger, there’s a positive correlation; if Y
gets smaller when X gets bigger, there’s a negative correlation; if there’s no linear
relationship, there’s a zero correlation. Here’s how we work it out.
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The covariance

First, we need some sort of number that tells us how much our two variables vary
together. Let’s suppose we have n observations. Let’s call our two variables X and Y.
We first find the two means, x  and y . Then we can calculate something called the

sample covariance:

1
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Look at the first part of the equation first — it’s very like the sample variance (if we
changed all the ys to xs in this equation, we’d have sX; if we changed all the xs to ys,
we’d have sY). (And yes, if you’re wondering, if we wanted the population covari-
ance, we’d divide by n rather than n–1, but we don’t.)

Perhaps you can see from the equation how it works. For a given {x, y} point, if x is
very far above the x-mean ( x ), and y is very far above the y-mean ( y ), then a big

number gets added to our covariance. Similarly, if x is very far below the x-mean
( x ), and y is very far below the y-mean ( y ), then a big number gets added to our
covariance. Both these occurrences suggest a positive linear relationship (like the
top-left part of our figure). On the other hand, if x is very far above x , and y is very
far below y , then a large negative number gets added to our covariance; the same’s

true if x is very far below x  and y is very far above y . Points near the mean don’t

tell us so much about the relationship between x and y, and they don’t contribute
much to the covariance score. If there’s no relationship between X and Y, then when
x is above x , about half the time y will be above y  and the covariance will get big-

ger, but about half the time y will be below y  and the covariance will get smaller,
so the covariance ends up being about zero.

The Pearson product–moment correlation coefficient, r

The covariance tells us how much the two variables are related, but it has a problem
— the actual value of the covariance depends on the standard deviations of our two
variables as well as the correlation between them. A covariance of 140 might be an
high correlation if the standard deviations are small, but a poor correlation if the
standard deviations are large. We can get round this problem by calculating r:

YX

XY
XY ss
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It turns out that r varies from –1 (perfect negative correlation), through 0 (no corre-
lation), to +1 (perfect positive correlation).

Incidentally, the correlations in our picture were +0.79 (figure A), –0.81 (figure B),
0.10 (figure C), –0.04 (figure D).

‘Zero correlation’ doesn’t imply ‘no relationship’

That should be immediately apparent: I’ve just told you that the correlation between
IQ and income in figure D was –0.04, nearly zero, and yet there’s clearly a very
strong relationship — it just isn’t a linear one. Always plot your data to avoid
drawing mistaken conclusions from r values.

Correlation does not imply causation

Finding that X and Y are related does not mean that X and Y are causally related.
It’s easy to jump to this assumption if the relationship is plausible — we might in-
tuitively think that clever people get better jobs, for example, and thus accept a
positive correlation between IQ as income as indicating causation. It doesn’t. Maybe
the causal relationship is backwards: having more money might improve your IQ.
Maybe the two are connected through a third variable: Z causes X and Z causes Y
(e.g. maybe having rich parents means you’re more likely to have a high IQ, and
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also makes you more likely to get a well-paid job as an adult). The point is, we just
can’t tell from the plain correlation.

Adjusted r

If we measured IQ and income for a sample of just two people — let’s say {IQ 110,
£20,000} and {IQ 120, £25,000} — and calculate r, we’ll find that there’s a perfect
correlation, +1. If you plot only two points on a scatterplot, you can always join
them perfectly with a straight line. This doesn’t mean that the correlation is +1 in the
population! So there’s something slightly wrong with our sample correlation statis-
tic, r — it’s a biased estimator of the population correlation, which we write as ρ
(Greek letter rho). We can to do something to make it a better (unbiased) estimator.
We can calculate the adjusted r, radj:
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If the sample size is large, r and radj will be about the same. Please note that doing
this will give you a positive value for radj, since square roots can’t be negative… so
you need to look at the original data or r value to work out which way (+ or –) the
correlation should be.

Beware if your correlation is based on a restricted range of data

It’s obvious that if we sample too few data points, we won’t get a very good esti-
mate of r for our population (that’s what calculating radj is meant to sort out). But it
should also be clear that if we sample from a restricted range, we can also get the
wrong answer, even if we sample many observations within that restricted range.
Here’s an extreme example (figures E–G below): depending on the range of data we
sample, we can contrive to find a negative, zero, or positive correlation between our
two variables.

Sampling a restricted range of data can overestimate r (E) or underestimate r (G) compared to sampling the whole
range (F). Black dots are part of the sample; white dots are part of the population that wasn’t sampled. The straight
line represents the correlation.

Beware outliers

Extreme values, or outliers, can have large effects on the correlation coefficient.
(We won’t talk about what to do with them in the IB course, but you should be
aware of the problems they can cause.) Two examples are shown in figures H–I.
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Outliers can have large effects on r. In (H) the outlier makes r nearly 0; without it, r would be nearly 1. In (I), the out-
lier makes r nearly 1; without it, r would be nearly 0.

Beware if your population has distinct subgroups

We can also encounter problems if our measurements aren’t from one homogeneous
population. A couple of examples are shown in figures J–K (but subgroup effects
can be a good deal more subtle than this!).

Fictional data illustrating problems with subgroups. (J) Correlation between height and weight for various things we
found in a magic forest. If we measure an overall correlation, we may find that tall things weigh less (negative correla-
tion between height and mass), but this is only because we have two very different subgroups. But we have heterogene-
ous subsamples — within each subgroup (wild boar and runner beans) there is a positive correlation. (K) A less stupid
example. If we are investigating whether something is carcinogenic, we might find a negative correlation, suggesting (if
we have designed our experiment so that we know that the chemical caused any observed change in cancer rate) that
the chemical protects from cancer. But we must check, because this could be due to a subgroup effect: a more detailed
analysis may reveal a vulnerable subgroup (who get high rates of cancer) and a resistant subgroup (who aren’t as
likely to get cancer); in this example, the rates of cancer are actually increased by the chemical in both subgroups.

2.3. Is a correlation ‘significant’?

Assumptions we must make

If all we want to do is to describe the sample that we have (e.g. with correlation
and/or regression), we don’t have to make any assumptions — although correlation
and regression both aim to describe a linear relationship between two variables, so
if the relationship isn’t linear, then the answers we get from correlation and regres-
sion won’t mean very much.

But if we want to perform statistical tests with the data (e.g. ‘is this correlation coef-
ficient significantly different from zero?’), we will effectively be asking questions to
do with the underlying population that our sample was drawn from (i.e. ‘what is the
chance that a sample with correlation r came from an underlying population with
correlation ρ = 0?’). This requires making some assumptions, or our statistical tests
won’t be meaningful. Basically, the data shouldn’t look too weird:
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• The variance of Y should be roughly the same for all values of X. This is often
called homogeneity of variance; its opposite, what you don’t want, is called het-
eroscedasticity (Greek homo same, hetero other, skedastos able to be scattered).

• If we are asking questions about ρ, we must assume that both X and Y are nor-
mally distributed.

• For all values of X, the corresponding values of Y should be normally distrib-
uted, and vice versa. [You may see the last two assumptions referred to together
as the assumption of ‘bivariate normality’.]

Heteroscedasticity: a Bad
Thing. The variance in income
is very different for low-IQ and
high-IQ data.

Testing the ‘significance’ of r — is r significantly different from zero?

Let’s suppose we take a sample of people, measure their IQs and incomes, and cor-
relate them to find r. That’s the correlation in the sample; but is there a correlation in
the whole population? Our null hypothesis is that the population correlation coeffi-
cient (ρ) is zero. Without going into the details, we can compute a number called a t
statistic:
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We can use this number, t, to perform a t test with n–2 degrees of freedom. (The
statistical catchphrase is that the number we have just calculated is ‘distributed as t
with n–2 degrees of freedom’; the t distribution is much like the normal distribution
that we’ve mentioned before, so we need to look up the probability corresponding to
our t statistic just like we might look up a probability corresponding to a Z score.)
To interpret this using tables, we can look up the critical value of t for our particular
value of α and the number of degrees of freedom (see p. 125); if our t statistic is big-
ger than the critical value, it’s ‘significant’ and we reject the null hypothesis that
there’s no correlation in our underlying population.

Note that we use r, not radj, for this test.

This is an example of a t test; we’ll cover these properly in Section 3.

2.4. Spearman’s correlation coefficient for ranked data (rs)

If our X and Y data are both ranked (see below for how to rank data), we can cal-
culate the correlation coefficient r just as normal, except that we’ll call it rs (some-
times called Spearman’s rho). However, when we want to test the significance of rs,
we have a problem, because we cannot make our assumption that the data are nor-
mally distributed. Some argue that there are substantial problems inherent in com-
puting the significance of rs (see Howell, 1997, p. 290). Anyway, with these caveats,
what we’ll do is to look up critical values of rs (see p. 124) if n ≤ 30, and if n > 30
we’ll calculate t and test that, just as before:
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To answer the question ‘are these values in a particular order?’ you can correlate
the rank of the data with the rank of their position. For example, suppose you take
large spoonfuls of bran flakes from the top of a cereal packet, one by one, and find
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the mean weight of individual bran flakes in each spoonful. These weights, in milli-
grams and in order, are 70, 84, 45, 50, 48, 40, 38, 40, 25, 30. If you want to establish
whether it’s true that big bran flakes come out of the packet first, you can correlate
the set of positional ranks {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with the corresponding ranks
of the data {9, 10, 6, 8, 7, 4.5, 3, 4.5, 1, 2} to get rs = –0.918 (p < .001).

How to rank data

Suppose we have ten measurements (e.g. test scores) and want to rank them. First,
place them in ascending numerical order:

5 8 9 12 12 15 16 16 16 17

Then start assigning them ranks. When you come to a tie, give each value the mean
of the ranks they’re tied for — for example, the 12s are tied for ranks 4 and 5, so
they get the rank 4.5; the 16s are tied for ranks 7, 8, and 9, so they get the rank 8:

X: 5 8 9 12 12 15 16 16 16 17
rank: 1 2 3 4.5 4.5 6 8 8 8 10

2.5. Regression

We’ve used correlation to measure how much of a relationship there is between two
variables. We can use a related technique, regression, to establish exactly what that
relationship is — specifically, to make predictions about one variable using the
other. Suppose there’s a positive correlation between serum cholesterol in 50-year-
old men and their chance of having a heart attack in the next five years. If Mr
Blobby has a serum cholesterol twice that of Mr Slim, are his chances of having a
heart attack doubled? Increased by a factor of 1.5? Tripled? Let’s find out.

If we call our two variables X (cholesterol) and Y (chance of having a heart attack),
we can write an regression equation that describes the linear relationship between
X and Y. It’s just the equation of a straight line:

bXaY +=ˆ

We call this the regression of Y on X, meaning that we’re predicting Y from X, not

the reverse. The Y with a ‘hat’ ( Ŷ ) just means ‘the predicted value of Y’. This is the
picture that this equation represents:

The regression equation and
what it means. You might also
see it written abxy += , or

axyy += 0 , or cmxy += , or

some other equivalent.

We could draw thousands of lines like this. So which one is the best fit to our data?

If we take a particular line bXaY +=ˆ , then for each {x, y} point, we can calulate a
predicted value bxay +=ˆ . From this, we can calculate how wrong our prediction

was: the prediction error is yy ˆ− . This error is often called the residual, because

it’s what you have left after you’ve made your prediction. Since this will sometimes
be positive and sometimes be negative, we can square it to get rid of the +/– sign,

giving us the squared error: 2)ˆ( yy − . So we should aim to find a line that gives us

the minimum possible total prediction error, or sum squared error, ∑ − 2)ˆ( yy .

(This procedure is called least squares regression.) As it happens, this is when
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xbya −=
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s
rb = if that’s easier with your calculator)

Note that regression is not a symmetrical process: the best-fit line for predicting Y
from X is probably not the same as the best-fit line for predicting X from Y (illus-
trated in the figure below). This is different from correlation, which doesn’t ‘care’
which way round X and Y are.

Residuals and lines of best fit. (A) What’s a residual? (B–D), which are LESS IMPORTANT, show why predicting Y
from X is different from predicting X from Y.

To save you the bother of doing this by hand, your calculator should give you A
and B (regression) and r (correlation) directly. Learn how to use it for the exam!
Typically, you put it into ‘statistics mode’ or ‘linear regression’ mode, clear the stats
memory, then enter each data point as an {x, y} pair — then you can read out the an-
swers.

Plotting and interpreting the regression line

To plot the line, you just need any two {x, ŷ } pairs — though it helps if they’re far

apart, because this makes your line more accurate, and it’s often wise to plot a third
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point somewhere in the middle to make sure it lies on the same line! The line will
also pass through the points {0, a} and { x , y }.

If you actually need to predict a y value from some x value — say your father’s got a
particular cholesterol level and you wanted to predict his risk of a heart attack —
then you can just use the regression equation directly. Beware of extrapolating be-
yond the original data, though (figure below). If you’ve based your regression
equation on 50-year-old men with a cholesterol level of 4–8 mM, they may be pretty
useless at predicting heart attack risks in 50-year-old men with a cholesterol level of
12 mM, or 100-year-old men, or 50-year-old women. Within the range of your data,
though, you can also make statements like ‘for every 1 mM drop in cholesterol, one
would expect a 10% reduction in the risk of a heart attack’ (or whatever it is); this
information is based on the slope of the regression line.

Beware extrapolating beyond
the original data.

Finally, remember that correlation and regression do not necessarily represent
causation (see above).

r2 as a measure of how good a correlation or regression is

So far, we’ve drawn a regression line. But how good it is at predicting Y from X de-
pends on how much of a relationship there is between Y and X — we could draw a
regression line where Y was the chance of having a heart attack and X was shoe size,
but it wouldn’t be a very good one. How can we quantify ‘how good’ our best fit is?

r2 represents the proportion of the variability in Y that’s predictable from the
variability in X, or (equivalently) the proportion by which the error in your predic-
tion would be reduced if you used X as a predictor. Let’s say the correlation between
cholesterol levels and heart attack risk were ridiculously high, at r = 0.8; then 0.82 =
0.64 = 64% of the variability in the risk of heart attacks would be attributable to
variations in cholesterol. If r = 0.1, then 0.12 = 0.01 = 1% of the variability in the
risks of heart attacks would be attributable to differences in cholesterol levels.

Note, once again, that this doesn’t tell you anything about causality. If rainfall is
predictable from twinges in your gammy knee, that doesn’t necessarily mean that
twinges cause rain, or that rain causes twinges.
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Two regressions with nearly identical equations ( XY 2ˆ = ) but different values of r2.

Mathematical statement of this property of r2

Let’s start by taking the worst-case scenario. If you knew nothing about your sub-
ject’s cholesterol level (X), how accurately could you predict his risk of a heart at-
tack (Y)? Your best guess would be the mean risk of a heart attack, y , and your er-

ror would be described in some way by the standard deviation of Y, Ys , or the vari-

ance 2
Ys . The variance, remember, is
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Now the bottom part of that, n – 1, is the number of degrees of freedom (df) our es-
timate of the variance was based on. (See page 14 — if you have n numbers, and
you use them to calculate the sample mean, y , then you can subsequently only alter

n – 1 of the numbers freely without altering the mean. This is called the number of
degrees of freedom you have left — it is the number of independent observations on
which a given estimate is based.) The top part is the sum of the squares of the devia-
tions of Y from the mean of Y, which we shorten to the sum of squares of Y (SSY).
So we can write the variance as

Y

Y
Y df

SS
s =2

Let’s now suppose that we do know our subject’s cholesterol. We have a whole set
of n observations with which to calculate a regression line, i.e. a and b. (Since we
calculate two numbers, we’re left with n – 2 degrees of freedom in our data.) But
now we can estimate our subject’s heart attack risk rather better, we hope — and the
error in doing so will be related to the residuals (error) of our regression’s predic-
tion. This thing is called the residual variance, or error variance, also known as
the ‘mean square (MS)’ of the residuals:
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and its square root, residuals  (sometimes written XYs ⋅  to show that Y has been pre-

dicted from X), is called the standard error of the estimate (it’s like a standard de-
viation — the square root of the variance of the errors is the standard deviation of
the errors, abbreviated to the standard error). We can also express the residual
variance and its square root like this:
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Actually, it’s generally easiest to do the calculations in terms of the sums of squares,
not variances, because then we don’t have to worry about all these degree-of-
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freedom corrections (r and radj and this n – 1, n – 2 business) — you can’t add two
variances together unless they’re based on the same number of degrees of freedom,
but you can add sums of squares together any way you like — and we find that

)1( 2rSSSS Yresidual −=

Y

residualY

SS

SSSS
r

−
=2

residualYY SSrSSSS += )( 2

In other words, the total variability in Y is made up of a component that’s related to

X ( residualYY SSSSrSS −=⋅ 2 , which we can also write as 
Y

SS ˆ , the variability in the

predicted value of Y) and a component that’s residual error (SSresidual). Translated to
our cholesterol example, people vary in their cholesterol levels (SSX), they vary in
their heart attack risk (SSY), a certain amount of the variability in their heart attack
risk is predictable from their cholesterol (

Y
SS ˆ ), and a certain amount of variability

is left over after you’ve made that prediction (SSresidual). Or,

residualYY SSSSS += ˆ

where

Y
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2.6. Advanced real-world topics

As with all the wavy-line sections, this section certainly isn’t intended to be learned!
It’s for use with real-world problems that you may encounter. You will not be tested
on any of this in the exam.

What’s ‘regression to the mean’?

Something related to regression, but quite interesting. It was discovered by Galton in
1886. He measured the heights of lots of families, and calculated the ‘mid-parent
height’ (the average of the mother’s and the father’s height) — call it X — and the
heights of their adult children — call it Y. He found that the average mid-parent
height was x  = 68.2 inches; so was the average height of the children ( y  = 68.2

inches). Now, consider those parents with a mid-parent height of 70–71 inches: the
mean height of their children was 69.5 inches. That is, the height of these children
(69.5) was closer to the mean of all the children ( y  = 68.2) than the height of the

parents (70–71) was to the mean of all the parents ( x  = 68.2). But this wasn’t a ge-
netic phenomenon, it was a statistical phenomenon, and it worked backwards: if you
took children with a height of 70–71 inches, the mean mid-parent height of their
parents was 69.0 inches. This is called regression to the mean.

Why does it happen? Suppose we have the variables X and Y, with standard devia-
tions sX and sY, and the correlation between them is r. We’ve previously seen that
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and the regression slope b is
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So a change of one standard deviation in X is associated with a change of r standard
deviations in Y. And we know the regression line always goes through the point at
the means of both X and Y — that is, the point { x , y }. Therefore, unless there is

perfect correlation (unless r = 1), the predicted value of Y is always fewer standard
deviations from its mean than X is from its mean. Remember that predicting Y from
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X is different from predicting X from Y, unless the two are perfectly correlated? This
is another way of saying the same thing.

Examples of regression to the mean (from Bland & Altman, 1994)

• If we are trying to treat high blood pressure, we might measure blood pressure
at time 1, then treated, and then measured again at time 2. We might see that
blood pressure goes down most in those who had the highest blood pressure at
time 1, and we might interpret this as an effect of the treatment. We’d be wrong;
this is regression to the mean. It would happen even if the treatment had no ef-
fect. The two sets of observations (time 1, time 2) will never be perfectly corre-
lated (because of measurement error and biological variation); r < 1. So if the
difference between our ‘high blood pressure’ subgroup and the whole popula-
tion was q at time 1, it will be rq at time 2 — i.e. the difference from the popu-
lation mean will have shrunk. We should have compared our treated group to a
randomized control group.

• In one study, people reported their own weight and had their weight measured
objectively. A regression was used to predict reported weight from measured
weight; the regression slope was less than 1. This might lead to you interpret
that very fat people underestimate their weight when they report it, and very
thin people overestimate it. But we’d never have expected perfect correlation.
All this might be is regression to the mean — and if we’d predicted measured
weight from reported weight, we’d also have a slope less than one, from which
we might have concluded the opposite: that very fat people overestimated their
weights and very thin people underestimated them.

• When scientific papers are submitted to journals, referees criticize them and
editors select the ‘best’ ones to publish on the basis of the referees’ reports. Be-
cause referees’ judgements always contain some error, they cannot be perfectly
correlated with any measure of the true quality of the paper. Therefore, because
of regression to the mean, the average quality of the papers that the editor ac-
cepts will be less than he thinks, and the average quality of those rejected will
be higher than he thinks.

Partial correlation — dealing with the effects of a third variable

Sometimes we are interested in the relationship between two variables and know
that a third variable is also influencing the situation. Imagine we examine the corre-
lation between IQ (X) and income (Y), and find it to be positive, but we suspect that
one reason that higher IQ predicts higher income is because people with higher IQs
are more likely to get into university, stay for higher degrees, and so on — and it’s
the degree that gets you the higher income, not your IQ itself. So is there any further
relationship between IQ and income once you’ve taken into account this effect of
studying for longer? One way of investigating this is to look at the correlation be-
tween IQ (X) and (say) number of years of study (Z), and the correlation between in-
come (Y) and number of years of study (Z). We can then calculate the partial cor-
relation between IQ (X) and income (Y) having taken account of the relationship of
each of these to number of years of study. We call this ‘partialling out’ the effects of
number of years of study. We term the partial correlation coefficient between X and
Y with the effects of Z partialled out rxy.z, and calculate it like this:
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Let’s use some fictional numbers to illustrate this: suppose that the correlation
between IQ and income is rxy = 0.6, the correlation between IQ and years of study is
rxz = 0.8, and the correlation between income and years of study is ryz = 0.7. Then the
correlation between IQ and income having partialled out the effect of years of study

would be only rxy.z = 0.09. This would mean that 2
.zxyr = 0.0081, so only 0.8% of the

variability in income is predictable from IQ once you’ve taken account of the num-

ber of years of study, even though 2
xyr = 0.36 = 36% of the variability in income is
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predictable from IQ. This would suggest that nearly all the ability of IQ to predict
income was due to the fact that high IQs predict more years of study.

The point-biserial correlation (rpb) for a dichotomous variable

If we ask the question ‘is body weight correlated with sex?’, we have a bit of a
problem with assuming that ‘sex’ is normally distributed; it clearly isn’t. Body
weight probably is, but mammals are either male or female; the sex variable is di-
chotomous (Greek dikhotomos, from dikho-, in two; temnein, to cut).

No problem: simply assign two values to the dichotomous variable as you see fit —
e.g. male = 0, female = 1 (or male = 56, female = 98; it doesn’t matter at all). Then
calculate r as normal. Officially this r is called rpb, the point-biserial correlation co-
efficient, but you can treat it like any r, and test it for significance in the same way
(a t test on n – 2 df) as we saw before:
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You might think that asking ‘does weight vary with sex’ and calculating a correla-
tion is a bit daft here, and the more natural question is ‘do the sexes differ in body
weight?’ You’d be right, really, but it is actually the same question. Since it’s the
same question, there must be a simple relationship between rpb and the t statistic:
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The use of this is that if you test the difference between two groups (e.g. male body
weights and female body weights) using a t test (which we’ll cover in Practical 2),
you can calculate r2, and therefore the proportion of the variability in body weight
explained by sex. And if you read the results of a t test in a research article, you can
interpret them in terms of r2 using this technique.

Correlations when the dichotomous variable is ‘artificial’…

The male/female dichotomy is natural; all subjects are either one or the other.
Sometimes a dichotomy is arbitrary, such as ‘pass/fail’ in an exam with a 60% pass
mark; this dichotomy classifies people who scored 59% and people who scored 1%
in the same category, but classifies people who scored 59% and people who scored
60% in different categories. If you have data like these and want to calculate a cor-
relation, you have to use a slightly different technique; this is described by Howell
(1997, p. 286).

Correlations with two dichotomous variables

If you want to calculate the correlation between two variables when both are di-
chotomous, again, you can do it. All you do is calculate r in the normal way; this
time, its special name is φ (phi). And it’s exactly equivalent to doing a χ2 test (which
we’ll cover in Practical 4). And there’s a relationship between the two:

n

2χφ =

Why is this useful? Again, because r2 is a measure of the proportion in the variabil-
ity in one variable that’s explained by a variable — the practical significance of the
relationship — and therefore so is φ2. So if you see a χ2 test reported in an article,
you can calculate φ2 to see whether the relationship is important (large) as well as
significant; see Howell (1997, p. 285).

Is a regression slope (b) significantly different from zero?

We saw earlier how to test if a correlation (r) was significantly different from 0.
Since correlation and regression are much the same thing, we can also calculate the t
statistic from the regression parameter b (from bxay +=ˆ ) using a different fornula.

For this it helps to use the notation XYs ⋅  rather than residuals for the standard devia-
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tion of the residuals left over when we have predicted Y from X. We would find that
the t statistic we’ve just worked out could also be found like this:
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As before, this t statistic is distributed with n – 2 degrees of freedom (which is why
the subscript on the t is n – 2).

If we calculate two regressions, are they significantly different?

Suppose we calculate the relationship between smoking and life expectancy in males
and females. We’d probably find that the more you smoke, the shorter you live (b <
0). Let’s suppose we find that this relationship is stronger in males (e.g. bmale < bfemale

< 0), suggesting that males decrease their life expectancy more than females for a
given increment in the amount they smoke (though, of course, the regression by it-
self doesn’t tell you anything about causality). Is this difference between males and
females significant? If we have two variables X1 and X2 that both predict a third
variable Y, and two sample regression coefficients b1 and b2, then we can calculate a
t statistic (with n – 4 df) for the null hypothesis that the two underlying population
regression coefficients are the same:
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‘I have two values of r from different (independent) groups. Are they different?’

If we want to do the same with correlations rather than regressions (‘is the correla-
tion r1 between male smoking and male life expectancy significantly different from
the correlation r2 between female smoking and female life expectancy?’) we have to
use a slightly different test. We convert r to a related number r′ and work out a Z
score from those:
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Then we look up our value of z in a table of the standard normal distribution to get
our p value.

‘I have two values of r, but they are not independent; are they different?’

Suppose we measured the number of GCSE points acquired by a group of 16-year-
olds, then measure the number of A-Level points acquired by the same people aged
18, then measure their annual income when they are 30. We could calculate a corre-
lation between any two of these variables. We could also ask whether the correlation
between GCSE scores and income was better/worse than the correlation between A-
Level scores and income. But these are clearly not independent correlations, because
they were all based on the same people, and so there will probably be a correlation
between GCSE scores and A-Level scores that we must take into account. If our
three correlations are rA, rB, and rC, and we want to know if the difference between
rA and rB is significant, then the null hypothesis is that rA and rB are the same, and we
can calculate a t statistic (with n – 3 df) like this:
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This is effectively a statistical test for partial correlations. The partial correlation co-
efficient will answer the question ‘what is the correlation between X and Y, taking
account of Z?’ This test will answer the question ‘is the correlation rxy significantly
different from the correlation rxz, taking into account the fact that these two correla-
tions are themselves related (non-independent)?’

‘Is my value of r different from (a particular value)?’

Suppose we have a sample with a correlation of r = 0.3, and we want to know if this
differs from a correlation of 0.5. The null hypothesis is that the sample r = 0.3 came
from a population with ρ = 0.5. We can calculate a Z score like this:
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If I calculate r, what are the confidence limits on ρ?

The expression for z above tells us that
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so we can calculate confidence intervals from appropriate critical values of z for a
two-tailed α:
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If you want 95% confidence intervals, zα/2 would be 1.96. Once you’ve worked out
confidence intervals for ρ′, we can convert them back to ρ to get our final answer:
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I have a regression equation; what are the confidence intervals on predictions?

Suppose you calculate the regression equation bXaY +=ˆ . For a given value of X,
(call it x) what are the confidence intervals on the predicted value of Y (call it ŷ )?

Clearly, predictions where x is near to x  are more likely to be accurate than predic-
tions where it’s very far away. First, we obtain the standard error of the estimate (as
on p. 36→):
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This standard error of the estimate is useful as an overall measure of prediction error
(for the data set), but it isn’t specific to our value of x — we know that predictions
are less accurate when x is far from x . So if we want to know how accurate a pre-
diction is for a given new value of x, we calculate something called the standard er-
ror of prediction, residuals′  (Howell, 1997, p. 253):
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Finally, we obtain the desired confidence interval (as on pp. 16 and 54):

residualn-ty sˆCI df 2for  critical ′×±=
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The end result is a set of confidence intervals like those shown in the figure below

(which plots some fictitious data with r = 0.58, the regression line bXaY +=ˆ , and
the 95% CI). Note that the confidence interval widens the further x is from x .

I have a group of subjects and have worked out a correlation for each one. Is this
correlation significant for my whole group?

Stop and go back a stage. Suppose you have a group of 20 rats and you measure
their performance on a test of attention and, simultaneously, the levels of the neuro-
transmitter acetylcholine in parts of their brain. Is there a relationship between ace-
tylcholine and attentional performance? If you only make one measurement per rat,
the problem is easy; you have 20 measurements of two variables, and can correlate
them as usual. If you’ve made 100 measurements for each rat, the problem is harder.
What can you do?

• You must not lump all the measurements together to give 2000 different {x, y}
pairs — because these observations are definitely not equally independent, since
subsets of observations are likely to be related by virtue of having come from
the same rat.

• To ask whether subjects with high levels of acetylcholine have high levels of
performance — a between-subjects question — you could take each rat’s mean
performance and mean acetylcholine and conduct a correlation as normal (n =
20). (And if you’d made 60 observations on some rats and 105 observations on
others, it wouldn’t matter, because you’d take the mean across all these sub-
jects. If you really felt that it was worth placing more weight on data from sub-
jects that you obtained more measurements from, you could conduct a weighted
analysis, weighting for the number of observations per subject.)

If different rats have very different levels of acetylcholine, then we could end up
with something like our wild-boar-and-runner-bean effect — for example, you
might find a negative correlation across the group (rats with lots of acetylcholine do
worse than rats with less acetylcholine), even though if you looked for it, you might
find a positive correlation within each rat (when any given rat has what is a high
level of acetylcholine for that rat, it performs better). So…

• If we want to know whether changes in one variable (acetylcholine) are paral-
leled by changes in the other variable (performance) in the same subject, and
that this is consistent across subjects — a within-subjects question using data
from multiple subjects — we can estimate the relationship within subjects using
a very general technique, called general linear modelling. This particular way of
using a general linear model (GLM) is called multiple regression or analysis of
covariance (ANCOVA). The GLM technique will handle even more compli-
cated problems, such as when we have two groups of rats (a control group and
one that has had part of their brain destroyed) and we want to know whether the
relationship between acetylcholine and performance is different in the two
groups. We will not cover these advanced techniques in the IB course.
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I want to predict a variable on the basis of many other variables, not just one.

Then you need multiple regression, which we’re not going to cover.

Correlation/regression in Excel — relevant functions (see Excel help for full details)

COVAR(…) Population covariance (i.e. divide-by-n formula). So to calculate r using this
number, you need to divide this by the product of the ‘population SDs’ of X
and Y, calculated using STDEVP(…) — or multiply COVAR(…) by n and then
divide it by n–1, before dividing the result by the product of the sample SDs,
calculated using STDEV(…).

CORREL(…) Calculates r.
SLOPE(…) Calculates b, the slope of a regression line bXaY +=ˆ .
INTERCEPT(…) Calculates a, the intercept of a regression line bXaY +=ˆ .
RANK(…) Don’t use it — it gets the ranks wrong when there are ties.
Tools → Data Analysis → Covariance Calculates sample covariances (i.e. divide-by-n–1 formula).
Tools → Data Analysis → Correlation Calculates r.
Tools → Data Analysis → Regression Calculates r, a, b, p.
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2.7. Examples 2: correlation and regression

For questions 1–3,
(a) calculate Pearson’s correlation coefficient r and test its significance
(b) find the equation of the best-fitting regression line (predicting the second

variable from the first)
(c) plot a graph showing the data points and the regression line (using the

first variable as the x axis and the second variable as the y axis)
(d) calculate r2 to find the proportion of the variance in the second variable

that is accountable for by predicting it from the first variable

Q1. The decay of a visual after-effect is believed to be slowed by blinking. The time
for the after-effect to decay to half strength (in seconds) was measured for twelve
subjects, and their blink rate (average number of blinks per minute) was also meas-
ured. Do the data show a correlation supporting the hypothesis?

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Blink rate 2.1 10.3 5.9 10.0 0.5 4.5 3.1 8.2 5.2 9.7 4.6 9.7
Decay time 24.5 29.8 27.9 32.9 23.0 21.0 23.2 25.3 24.7 30.7 26.5 28.9

Q2. The average number of alternations per minute seen in a Necker cube was
measured for 15 subjects who were also tested on the Indecision subtest of the Ken-
tucky Personal Effectiveness Test (KPET). Is there an association between the two
scores?

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Alternations
per minute

20 20 21 35 15 17 19 9 4 5 3 40 22 22 17

KPET 175 130 101 200 118 120 137 120 117 120 118 222 118 191 190

Q3. Ten frog retinal ganglion cells were repeatedly stimulated by a flash of light of
constant intensity. The average latency of the first nerve impulse and the average
number of spikes produced in the 10 ms after the first impulse are given below. Is
there evidence that the shorter the latency, the more spikes are produced?

Cell A B C D E F G H I J
Latency (ms) 102 110 120 80 65 73 97 150 111 74
No. of impulses 1.7 3.1 4.6 7.2 6.3 6.0 4.8 2.1 5.3 5.9

Q4. I walk in a straight line away from St Peter’s Basilica in Rome. Every time I en-
counter an ice-cream stall, I buy a vanilla cone. In order, the prices (in €) were as
follows:

1.8 1.4 2.0 1.0 1.0 1.4 0.8 0.6 1.0 0.8

Do Roman street vendors charge more for their proximity to the Vatican?

Q5. Ten people are repeatedly offered the choice between a small, immediate
monetary reward (e.g. £10 now) and a large, delayed monetary reward (e.g. £100
next week). From their preferences, a number is computed that represents their im-
pulsivity when choosing. At the end of the test, they lie down and the experimenter
inserts a needle into their spinal space to withdraw a sample of cerebrospinal fluid,
which he tests for levels of 5HIAA, a metabolite of the neurotransmitter 5HT (sero-
tonin). The results are as follows:

Subject A B C D E F G H I J
Impulsivity score 85 51 76 23 55 90 42 56 21 61
5HIAA level
(ng/ml)

25 28 40 37 22 35 31 18 32 29

Do these data suggest a relationship between CSF 5HIAA and choice impulsivity?
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3. Difference tests — parametric

Objectives

We will go through the various types of tests for asking the question ‘is the mean of
this sample significantly different from… (something)?’ We will then look at the t
test, a very popular ‘parametric’ test. This has various forms, depending on the kind
of data you want to analyse. We will look at nonparametric tests in Practical 4.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

3.1. Background

Reminders

We’ve already discussed the differences between one- and two-tailed tests (p. 23).
We’ve already talked about making multiple comparisons between groups (p. 24).

Paired and unpaired tests (related and unrelated data)

When we come to look at the difference between two samples of data, the samples
can be related or unrelated. Suppose we want to compare the speed with which peo-
ple can rotate figures mentally in two conditions: on land and underwater. (1) We
could take a group of landlubbers and a group of divers, and compare them. There
would be no particular relationship between individual data points from the land
sample and the underwater sample. We would use statistical methods that are de-
scribed as unrelated, unpaired, or between-subjects. (2) Alternatively, we could
measure the same group of people in two conditions, on land and underwater. In this
situation, there is a relationship between one subject’s score on land and the same
subject’s score underwater — they are likely to be more similar than they would be
by chance alone, because they come from the same person. Our statistical methods
must reflect this fact; the techniques we would use are described as related, paired,
or within-subjects.

It is absolutely not acceptable to fail to take account of relationships like this be-
tween data. A classic example of this sort of error is something called pseudorepli-
cation. Suppose you test Alice, Bob, and Celia on land, and Eric, Frankie, and Greg
underwater. You obtain 6 observations, n = 3 for each group. Your groups are not
related. So far, so good. But suppose you want more than 6 observations; you might
measure each subject three times. This would give you observations A1, A2, A3,
B1… on land, and E1, E2, E3, D1… underwater. The error is to analyse this as if you
had 18 observations (n = 9 for each group). This is wrong, because A1, A2 and A3

are all related — more so than A1 and B1, or A1 and E1. We will not cover the ana-
lytical techniques required for this sort of situation, where we have multiple vari-
ables (in this case, land/underwater as a between-subjects variable, observation
1/observation 2/observation 3 as a within-subjects variable) — that’s covered in
the Part II course. If you have data like these, the simplest thing is to obtain some
sort of ‘overall’ score for each subject (e.g. take Alice’s overall score to be the mean
of A1, A2, and A3) and analyse those.

If you have data from only one subject, then you can consider the data to be ‘unre-
lated’ for the purposes of analysis, but your conclusions only apply to that subject.
For example, if you measured my ability to remember sequences of digits (my digit
span) ten times when I’m on dry land and ten times when I’m underwater, you could
treat the data as unrelated — they have no relationship to each other beyond the fact
that they come from the same subject, and that’s part of your analytical ‘context’
anyway. You would have a sample (n = 10) of my dry-land digit span, and a sample
(n = 10) of my underwater digit span. If the dry-land scores were significantly
higher than the underwater scores, you could conclude that my digit span was better
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on dry land than underwater — but this would tell you absolutely nothing about
people in general, because I might not be a representative person. You would only
know this by testing more people. (If you’re wondering, the rather foolish situation
in which you would need to deal with further ‘relatedness’ when you’re only testing
one subject might be something like this: you test me in a car on dry land, in a car
underwater, drunk on dry land, drunk underwater, tired on dry land, tired underwa-
ter… then to ask the ‘dry land versus underwater’ question, you would treat the ‘car’
pair of observations as related, the ‘drunk’ pair as related, and so on.)

Parametric and non-parametric tests

In the tests we’ll cover here, we analyse differences involving one or two samples
by making assumptions about the populations they come from. Remember the jar-
gon (p. 8): we estimate parameters of populations by using statistics of samples.
The tests we’ll cover in this section make assumptions about the parameters of the
populations — for example, assuming that the underlying population is normally
distributed. They are therefore called parametric tests.

If the assumptions of a parametric test are not justified — if our data are a bit odd —
then we have two alternatives. (1) We can transform the data to make them fit the
assumptions better. We won’t cover this approach in the IB course, but it’s important
for ‘real-life’ data analysis. (2) We can use a test that does not make these assump-
tions about the distribution of the population — a nonparametric or distribution-
free test.

If a test’s assumptions are met, it should give an accurate value of p. We say that a
test is robust if it gives a good estimate of p even if we violate its assumptions. (We
may also say that it’s liberal if it underestimates p when certain assumptions are
violated — that is, says things are ‘significant’ more often than it should — or con-
servative if it does the opposite.)

In general, parametric tests have more power. If the assumptions of a parametric test
are met, it’s therefore better to use the parametric test. Many parametric tests are
also quite robust, so people don’t get too worried if the assumptions are not quite
met, but not grossly violated. Parametric tests can also be used for complex analyses
that can be quite hard to do with non-parametric tests. Transformations are a way of
‘rescuing’ the parametric test by making the data fit the test’s assumptions better;
this is why transformations are widely used. Non-parametric tests are sometimes
viewed as a bit of a last resort, because they have lower power. (On the other hand,
if you find a significant effect with a low-power test, you have no problem, and
some statisticians argue that non-parametric tests are a generally Good Thing,
though it’s probably fair to say that most researchers prefer parametric tests.) Occa-
sionally, if the data are ‘odd’, nonparametric tests have more power.

We’ll cover some non-parametric tests in section 4.

3.2. The one-sample t test

Overview

Suppose we have one group of n men and want to know if they are unusually tall.
We can measure their height, and ask the question ‘does the mean of this sample dif-
fer significantly from µ metres?’, where µ is the average height of our reference
population (all the men in the UK, perhaps). To do this, we define the null hypothe-
sis that the sample comes from a population with mean height µ metres. We calcu-
late the sample mean x  and the sample standard deviation sX. From this, we can cal-

culate the standard error of the mean, nss Xx /= . Then, we can calculate a t

statistic:
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This is called a t statistic with n – 1 degrees of freedom (df). We look up our t sta-
tistic in our tables (see p. 125) to find a critical value of t for this many df and our
desired level of α. (If we want a two-tailed test with a level of α, we have to allocate
α/2 to each tail.) If our value of t is bigger than this critical value, we reject the null
hypothesis.

Significant values of t can be big positive numbers or big negative numbers.
Non-significant values of t are close to zero.

The t test is always obtained by taking a number, subtracting from it a test value,
and dividing the result by the standard error of the number. We’ll see several dif-
ferent forms of the t test for different types of data (one sample, two samples, etc.),
but they all have the same general format.

How did we arrive at this? You don’t need to know, but if you’re interested, see
page 57.

Some people use the subscript on the t to refer to the number of degrees of freedom
(e.g. ‘t6 = 2.5, two-tailed p < 0.05’); others use it to denote critical values (‘for df = 6
and two-tailed α = 0.05, tα/2 = t0.025 = 2.447; our t = 2.5, so p < 0.05’). I prefer the
first of these, as you can probably tell.

The t distribution with different degrees of freedom. With
many degrees of freedom (as df → ∞) it becomes just like
the normal distribution, but with few degrees of freedom it
is a different shape; critical values of t for few df are
therefore larger than critical values of Z.

What is the standard error of the mean (SEM)?

Suppose we have a population with mean µ and variance σ2, and we repeatedly take
very many samples from it, with each sample containing n observations. We can say
some things about the samples that we take. For each sample, we can calculate a
sample mean x . So we can collect lots of different sample means — many values of
x . Now we can ask what might at first appear to be an odd question: what will be
the distribution of these sample means? The mean of all the sample means (the mean
of all the values of x ), written xµ , will be the same as the population mean, µ. The

standard deviation of all these sample means (the standard deviation of all the values
of x ), written xσ , is usually called the standard error of the mean (SEM). It’s a

measure of how much the value of the sample mean x  may vary from sample to
sample taken from the same population. It can be used to compare the observed
mean to a hypothesized value — as we saw above, it’s the basis of the t test. If we
know the population standard deviation σ and the sample size n, we can calculate the
SEM like this:

n
x

σσ =

If we don’t know σ, we can estimate the population SEM using the sample standard
deviation s, to give us the sample SEM:

n

s
sx =
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3.3. The two-sample, paired t test

It’s very easy to extend the one-sample t test to two related groups. Suppose you
measure the heights of n girls when they’re 10, and then again when they’re 11, so
you have two measurements for each girl. These two measurements are clearly re-
lated (more so than two measurements for two different girls). We want to know if
our girls are growing normally. For each girl, we can therefore calculate the differ-
ence or difference score between the two related measurements — we just subtract
one from the other. We will obtain n difference scores (the amount that each girl has
grown). Suppose we know that the average girl grows 5 cm between the ages of 10
and 11 (µ = 5). We can just run a t test on the difference scores, exactly as before:

n

s
x

t
X

n
µ−=−1

If our value of t exceeds the relevant critical value for n – 1 df and an appropriate α,
we reject the null hypothesis that our girls come from a normal-growing population.

The paired t test is used for related (or matched) samples. Two samples are related
whenever you can use one sample to make better-than-chance predictions of the
other. In this example, knowing one girl’s height aged 10 allows you to make a bet-
ter-than-chance prediction of the same girl’s height aged 11, but doesn’t allow you
to predict another 11-year-old girl’s height. In this example, the two samples come
from the same subject, but sometimes related samples don’t come from the same
subject. For example, if you ask different couples to rate their satisfaction about
their relationships, it is likely that if the man is very dissatisfied with the relation-
ship, the woman is too, so their scores would be related (but would not be related to
scores from a different couple).

Here’s an example: suppose the initial heights of the girls in cm are {125, 148, 132,
135, 139, 129} and after a year they are {129, 153, 135, 140, 148, 136}. The differ-
ence scores (age 11 heights minus age 10 heights) are {4, 5, 3, 5, 9, 7}. The mean of
this sample of difference scores is x = 5.5; the sample SD is sX = 2.17; n = 5. We
want to know if our group differs from a population with mean µ = 5. We can cal-
culate that t = (5.5 – 5) / (2.17 / √5) = 0.51. This t statistic has n – 1 = 4 df. For a
two-tailed α = 0.05, the critical value of t is 2.776. Our t is less than this, so we do
not reject the null hypothesis; the girls are growing normally.

3.4. The two-sample, unpaired t test, for equal sample variances

The essence of a two-sample t test. We have two samples
with means 1x  and 2x . If the distance (difference) be-

tween means ( 12 xx − ) is big enough, we say that the two

samples are significantly different (which is to say, the two
samples come from underlying populations whose means
are different). We measure the distance between the
means — somehow — in terms of the standard deviations
of the samples, s1 and s2.

Overview

If we have two independent (unrelated) groups, X1 and X2, with equal variances

( 2
2

2
1 ss = ), we can ask if they are significantly different from each other. The null

hypothesis is that the two underlying populations have the same mean (µ1 = µ2). We
can calculate a t statistic, which has the same general form as before: it’s the differ-
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ence between means divided by the standard error of that difference, and this time
it has (n1 + n2 – 2) degrees of freedom.
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If the groups are of the same size (n1 = n2 = n), then the formula becomes simpler:
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This test assumes that the two samples come from populations with equal variances

( 2
2

2
1 σσ = ), whether or not n1 = n2. If this assumption is violated, we must use the

unequal variances version of this test (see below).

Example

Suppose we collect young horses and assign them to one of two groups at random.
We feed one group (n = 10) FastDope, a drug that we suspect of having perform-
ance-enhancing properties. The other group (n = 10) are given a placebo. They are
then timed running along a 1 km racetrack and their speed is calculated in m⋅s–1. The
null hypothesis is that the speeds of the drugged and undrugged groups do not differ.
We find that the speeds of the drugged group (group 1) are {14.6, 12.6, 12.2, 15.0,
12.5, 12.1, 13.1, 12.2, 14.1, 14.2} and the speeds of the placebo group (group 2) are
{10.8, 11.9, 9.7, 9.3, 12.0, 9.6, 10.7, 8.9, 12.5, 12.0}. Since n1 = n2, we can use the
simpler of the two formulae for t, and can therefore calculate
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For 18 df, the critical value of t for a two-tailed α = 0.05 is 2.101. Since our t statistic
exceeds this critical value, we reject the null hypothesis; the drugged group ran
faster.

How did we derive this t test? If you’re interested, see page 59.

If there is a significant difference, which way round is it?

If you calculate a two-tailed t test and find a significant result, then you may declare
the group means to be significantly different — and by looking at the means, you
can see which mean is bigger. So that mean is significantly bigger! Sometimes peo-
ple calculate a t test, find a significant result, and then think they’re not allowed to
say which of the groups has the significantly larger mean, which is nonsense.

If, on the other hand, you run a one-tailed test, you specify in advance which direc-
tion of difference you are interested in (i.e. whether you’re only interested if group 1
> group 2, or only interested if group 2 > group 1). Suppose you are only interested
if group 1 > group 2. If you conduct a one-tailed t test and find a significant result,
you may declare the mean of group 1 to be significantly bigger than that of group 2.
If you do not find a significant result, you may merely say that the group 1 mean is
‘not significantly bigger’ than that of group 2. You should not then proceed to see if
it is smaller instead, because then you would have broken the implicit promise of the
one-tailed test — not to be interested in differences of the opposite kind — and your
α and p values would be misleading (see p. 23).
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3.5. The two-sample, unpaired t test, for unequal sample variances

Unequal sample variances.

If the two sample variances are not equal (heterogeneous variances), we have a bit
of a problem. First, the number we calculate will not have a t distribution, so if we
look it up using t tables we’ll get the wrong answer. Second, it makes no sense to

use 2
ps  in our formula (to ‘pool’ the variances of the two groups) since that proce-

dure also assumes equal variances (as explained in section 3.12 if you’re really in-
terested). But we can still run a t test, although we’ll lose a bit of power (the test is
more conservative). We use this formula and call the result t′:
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We then test it just as if it were a t score, but with a different number of degrees of
freedom. If we’re doing it by hand,

degrees of freedom = (n1 – 1) or (n2 – 1), whichever is smaller.

If you have a computer, you can get a slightly better answer, which will lie some-
where between the hand-calculated version above and the original, uncorrected for-
mula (using df = n1 + n2 – 2). It’s called the Welch–Satterthwaite approximation (see
Howell, 1997, p. 197), and it’ll give us slightly more power. But you’ll be doing it
by hand in the exam and the W–S technique is too laborious to do by hand.

3.6. So are the variances equal or not? The F test

If you want to know whether to use the equal variances or unequal variances ver-
sion of the two-sample unpaired t test, you obviously need to know whether your
population variances are equal or not, and the only way you can usually find that out
is to test whether your sample variances are equal or not. Actually, what we do is to
ask if our sample variances are significantly different from each other; if they are, we
use the ‘unequal variances’ t test; if they’re not, we use the ‘equal variances’ t test.

There are several methods available for testing differences between variances.
Firstly, look at the data; it may be obvious. A good formal statistical test is
Levene’s test, provided by all good statistical packages, but it’s a bit too much work
to calculate by hand. Even the pen-and-paper test suggested by Howell (1997, p.
198), though good, would take a lot of time in the exam. So we’ll use the F test.
This may not be the ‘best’ test (it has problems — becomes liberal — if the data are
not normally distributed, though if they are, it’s the most powerful at detecting dif-
ferences in variances). However, it’s quick and good enough to decide whether the
variances are too different for the ‘equal variances’ version of the t test.
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The F test

The F statistic is a ratio of two variances. If the two variances are equal, F = 1. If
they’re not, F ≠ 1. How much more/less than 1 does it need to be before we declare
the difference ‘significant’? We find that from tables of critical values of F (see p.
126). The F distribution is based on two numbers for the degrees of freedom: one for
the numerator, and one for the denominator. We might write this as Fa,b where a is
the number of df for the numerator and b is the number of df for the denominator:
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In practice, tables of F don’t give critical values for F < 1; they only give critical
values for F > 1 (if you had F < 1, you could always take the reciprocal, 1/F, and
test that). So to make sure that our F > 1, we always put the biggest variance on the
top (numerator) of the ratio, and the smallest variance on the bottom (denominator).
So if the variances are different, the F statistic will be bigger than 1. In other words:
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So you can run an F test on your data before choosing a t test; if it’s significant (es-
pecially if n1 ≠ n2), use the unequal variances t test; if it isn’t, use the equal variances
t test.

One more thing, though — if you want to test whether the variances are different
with α = 0.05 (two-tailed), you must run the F test itself with α = 0.025. If you run
the test with tabled values for α = 0.05 (one-tailed), your actual two-tailed α will be
0.1. Why? Well, asking whether the variances are different without specifying the
direction of the difference is a two-tailed test. The critical values of F, however, are
for a one-tailed test (because we only test significance when F > 1, rather than F <
1). You’ve forced it to become a two-tailed test by calculating F in such a way that
that F > 1; you must therefore double the stated one-tailed α to get the two-tailed α.
The Tables & Formulae (p. 126) give both the one-tailed and ‘two-tailed equivalent’
values of α; you should use the ‘two-tailed equivalent’ α for testing whether two
variances are different in this context.

One-tailed, two-tailed… notes only for Part II students using this for revision

When using F tests as part of analysis of variance (ANOVA), covered in Part II, use
the one-tailed critical values of F. Why? Because ANOVA compares a measure of
‘effect size’ (MSeffect) with a measure of variability (MSerror): F = MSeffect/MSerror.
MSeffect gets bigger no matter what the direction of the effect. We are only interested
in whether an effect is bigger than we’d expect by chance; given the assumptions of
ANOVA, it would not be sensibly possible to get an effect ‘smaller’ than we’d ex-
pect by chance alone. So we use the one-tailed critical values of F. It is in this (one-
tailed) sense that F = t2 as discussed below.

Relationship between the F test and the t test

The t test is actually a special case of the F test:
2

,1 kk tF =  and kk Ft ,1=
where k is the number of degrees of freedom. In other words, a t test on k df is di-
rectly equivalent to an F test on 1 and k df. The difference that the t distribution is
symmetrical about zero, since it deals with the differences between things, so values
of t can be positive or negative. The F test deals with squared values, which are al-
ways positive, so F ratios are always positive (see Keppel, 1991, p. 121).
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3.7. Assumptions of the t test

For any t test:

• You’re testing hypotheses about the mean, which only makes sense if the mean
is meaningful (it may not be if the measurement scale you used wasn’t an inter-
val or ratio scale — see p. 7).

• The maths behind the t test assumes that the underlying populations of the
scores — or difference scores, for the paired t test — are normally distributed.
(Large samples help to make up for lack of normality, but see below for more
explanation. Casual rule of thumb: if n > 15 and the data don’t look too weird,
it’s probably OK to use a t test; if n > 30, it’s usually fine.) If this assumption is
violated, you can’t use any form of t test.

For two independent samples, to use the equal-variance t test, we assume

• The two samples come from populations with equal variances ( 2
2

2
1 σσ = ),

whether or not n1 = n2.

The t test is fairly robust to violations of this assumption if n1 = n2, but not if n1 ≠ n2.

The case where the variances are unequal and so are the ns is the only situation in
which the t test becomes liberal (see p. 46) — particularly if the sample with the
smaller n has the larger variance (Boneau, 1960).

More detailed explanation of the normality assumption

The assumption about normally-distributed data was stated above casually. This is
the full explanation; I’ll use ‘scores’ to refer to the numbers being analysed.
1. The logic behind the t test doesn’t make assumptions about the distribution of

the scores per se, but it does assume that the means taken from samples of size
n are themselves normally distributed (see p. 57). This is always true if the
scores themselves are normally distributed, but is also true if the scores are not
themselves normally distributed but the sample size is large (e.g. >15 if the
scores are not too far from a normal distribution; >30 if the scores are very non-
normal) — this is a consequence of something called the Central Limit Theorem
(see p. 57). (See also Frank & Althoen, 1994, pp. 388-390, 401-406.) For the
two-sample t test, simply read ‘difference scores’ instead of ‘scores’.

2. The t test also makes assumptions about the distribution of the variance of the
samples — it assumes that they have a χ2 distribution (see pp. 58 and 81),
which is true if the underlying scores are normally distributed, but may not be
true if they’re not (e.g. highly skewed; see Howell, 1997, p. 177, and
core.ecu.edu/psyc/wuenschk/StatHelp/t-CLM.txt).

3. There is an additional reason for wanting the scores themselves to be normally
distributed. If they aren’t, the sample mean and the sample variance (or standard
deviation, if you prefer) are not independent. For example, consider a positively
skewed set of scores (see p. 17). Because low scores are generally closer to-
gether than high ones, samples with low means will tend to have lower vari-
ances than samples with high means. This skew can make the t test less power-
ful. The two-sample t test can also give distorted results if the two samples have
different skew (see also Howell, 1997, p. 201).
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3.8. Graphical representation of between- and within-subject changes

‘Error bars’ (or ‘mean ± variation’) — the SEM is commonly used

The SEM is frequently used when people publish data. They may quote a measure-
ment of ‘25.4 ± 1.2 g’, or display a datum on a graph with a value of 25.4 units and
error bars that are each 1.2 units long. These ‘variation’ indices could be one of sev-
eral things — mean ± SD, mean ± 95% CI, mean ± SEM… The paper should state
somewhere which one is being used, but usually it’s the SEM. Why? First, it’s
smaller than the SD, so it conveys an impression of improved precision (remember
that accuracy is how close a measurement is to a ‘true’ value and precision is how
well it is defined; thus, 2.5000000003 × 108 m⋅s–1 is a more precise but far less accu-
rate measurement of the speed of light than 3.0 × 108 m⋅s–1). In fact, using the SEM
is perfectly fair and correct: the precision of an estimator is generally measured by
the standard error of its sampling distribution (Winer, 1971, p. 7). Secondly — more
importantly — if the SEM error bars of two groups overlap, it’s very unlikely that
the two groups are significantly different. (This is explained somewhat in the fig-
ure.) The opposite isn’t necessarily true, though — just because two sets of error
bars don’t overlap doesn’t mean they are significantly different (they have to
‘not overlap’ by a certain amount, and that depends on the sample size, and so on).

Within-subjects comparisons and the SED

For within-subjects comparisons, SEMs calculated for each condition are highly
misleading (see figure). For this comparison — indeed, for any comparison — the
SED is an appropriate index of comparison, because that’s what the t test is based on
(t = difference between means / SED). So if the difference between two means is

Graphical presentation and interpretation of between- and within-subject changes.
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greater than twice the SED, t > 2. And for a healthy n, t > 2 is significant at the
two-tailed α = 0.05 level (have a quick glance at your tables of critical values of t —
p. 125).

The SED is therefore a very good index of variation that can be used to make visual
comparisons directly, particularly if you draw error bars that are 2SED long — if the
means to be compared are further apart than the length of this bar, there’s a good
chance the difference is significant. However, it’s a bit more work to calculate the
SED, which is why you don’t see it very often.

If you want to work out an SED, just choose the appropriate t test and calculate the
denominator of the t test. For between-group comparisons where the group SEMs
are SEM1 and SEM2, you’ll see that SED = √(SEM1

2 + SEM2
2).

To summarize, for within-subject changes:
1. The mean within-subject change equals the difference of the group means.
2. The variance of the within-subject change may differ greatly from the variance

of any one condition (group).
3. Present within-subject changes when the baseline varies a lot, or you want to

show variance of the within-subject measure.
4. Present group means when the baseline matters.

3.9. Confidence intervals

One sample — confidence intervals on the population mean, µµµµ

We can use the t formula to establish confidence intervals for particular measure-
ments, just as we did for Z scores (p. 16). Suppose when we measured the heights of
a group of n = 10 UK men and found x = 1.82 m, s = 0.08 m. We could calculate the
95% confidence interval like this. Since

n

s
x

t
X

n
µ−

=−1

we can work out 95% critical values for t (i.e. α = 0.025 each tail) with n – 1 = 9 df.
From our tables (p. 125), these critical values are ±2.262. We can plug these into the
formula above to find an expression for µ as a 95% confidence interval:

10

08.0
82.1

262.2
µ−

=±

06.082.1 ±=µ
What would this mean? That there is a 95% chance that the true mean height of
UK men is in the range 1.76 to 1.88 m. We could also write this as a general for-
mula:

n

s
tx X

dfncritical )1( −±=µ

Any value outside the confidence interval is significantly different from the sample
mean at the specified level (e.g. any value outside the 95% CI is significantly differ-
ent from the sample mean at α = 0.05, two-tailed). Any value inside the CI is not
significantly different from the sample mean at the specified level of α.
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Confidence intervals.

Two samples — confidence intervals for a difference between means, µµµµ1 – µµµµ2

Similarly, if we have two samples whose mean difference is 21 xx − , we can use the
formula for a two-sample t test to find the interval within which there is a 95%
chance of finding the underlying population difference, µ1 – µ2.

3.10. Power and things that affect it

We won’t talk about power in any great detail; certainly, you’re not expected to cal-
culate power. But it is helpful to understand what power is. Remember (see page 22)
that α is the probability of rejecting the null hypothesis H0 when it is in fact true (a
Type I error); β is the probability of not rejecting H0 when it is in fact false (a Type
II error); power is (1 – β), or the probability of rejecting H0 when it is in fact false. If
your power is 0.8, it means that you will detect ‘genuine’ effects with p = 0.8.

The consequences of Type II errors can be just as serious as those of Type I errors.
If you run an expensive experiment with a very low power, you have a very small
chance of finding the effect that you’re looking for even if it does exist; if you then
don’t find it, you’ve probably wasted your time and money. (If you ever plan to run
a seriously expensive experiment, make sure you understand how to do power cal-
culations to work out how big your sample size should be, or ask a statistician to do
it for you!)

Several things affect power: the size of the effect you’re looking for (the difference
between µ0 and µ1 — bigger effects give higher power), the sample size (n — the
more observations you have, the higher the power), the variance of the sample (σ2 —
smaller variances give higher power), and of course your chosen level of α (higher α
means lower β and therefore higher power, although higher α increases the chance of
a Type I error). Have a look at the piccie (below).
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Factors affecting power. If H0 is true, and we take a set of samples each with mean x , the mean of all the values of x
will be µ0. If H1 is true, the mean of x  will be µ1. The distribution of all the values of x  — the so-called ‘sampling dis-
tribution of the mean’ will be the curve labelled H0 (if H0 is true) or H1 (if H1 is true instead). The area under each
curve is 1. Our job is to try to distinguish whether H0 or H1 is true on the basis of a single sample mean x . We do this
by setting α, the proportion of times that we reject H0 when it is true. Setting α creates a criterion and thereby deter-
mines β, the chance of rejecting H1 when it is true. In turn, this determines power, since this is 1 – β (the rest of the area
under the H1 curve). However, things other than α also affect power (middle and right-hand figures).

One thing that you should remember from this is that significance levels do not in-
dicate effect size. Extremely large samples have power to detect very small effects
with very small p values. Suppose a carefully-controlled study of a million people
finds that running two miles a day decreases the risk of puffy ankles by 1% (p <
0.001). This is a study with high power finding a small effect that probably isn’t im-
portant. On the other hand, absence of evidence is not evidence of absence — un-
derpowered studies may fail to find large effects. A study of twenty 50-year-old men
with heart disease might find no evidence that aspirin decreases the risk of a heart
attack over the next five years (p > 0.1). This is a study with very low power failing
to detect quite a substantial and important effect (aspirin does indeed reduce this
risk).

Significance is not the same as effect size.

Reporting both may be useful (for example, giving the
effect size with its 95% confidence interval; if the confi-
dence interval includes 0, then the effect size is not signifi-
cantly different from 0).

How big an effect needs to be to be important depends on
the experiment.
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3.11. Supplementary material: deriving the one-sample t test

The sampling distribution of the mean and the central limit theorem

Suppose we have a population with mean µ and variance σ2. If we repeatedly take
samples of n observations, we can say some things about the samples that we take.
For each sample, we can calculate a sample mean x . So we can collect lots of dif-
ferent sample means — many values of x . Now we can ask what might at first ap-
pear to be an odd question: what will be the distribution of the sample means (also
known as the sampling distribution of the mean)? What will be the mean of all the
sample means (the mean of all the values of x , written xµ )? What will be the stan-

dard deviation of all these sample means (the standard deviation of all the values of
x , written xσ )? What we need to know is contained in a fact called the central
limit theorem. There are various ways of stating this. The simplest is that if W1, W2,
… Wn are independent, identically distributed random variables and Y = W1 + W2 +
… + Wn, then the probability density function of Y approaches the normal distribu-
tion as n → ∞. (This explains why the normal distribution so closely approximates
so many biological, sociological, economic, and other variables that are themselves
the sum of the effects of many other variables.) A more thorough version of the
central limit theorem applicable to our present needs is this:

Given a population with mean µ and variance σ2, from which we take sam-
ples of size n, the distribution of sample means will have a mean µµ =x , a

variance 
nx

2
2 σσ = , and a standard deviation 

n
x

σσ = . As the sample size n

increases, the distribution of the sample means will approach the normal dis-
tribution.

This is very important. It doesn’t matter whether or not the population is normally
distributed; if you sample from it, the distribution of the sample means always ap-
proaches the normal distribution. (If the population is normally distributed and uni-
modal, the sample means will be normally distributed even if n is small; if the
population is very skewed, n may have to be quite large — e.g. >30 — before the
distribution of the means starts to become normally distributed.)

Very hard bit: why nx σσ = ? Well, the variance of individual observations is σ2.

So the variance of means of sample size 1 is σ2. The variance of means of sample
size n is the variance of (a sum of n individual observations, divided by n), by the
definition of a mean, which is the variance of (a sum of n individual observations)

divided by n2. This is a consequence of the variance law )()( 2 XVccXV = , or
2/)()/( cXVcXV = . And the variance of (a sum of n individual independent obser-

vations) is nσ2. This is a consequence of the variance sum law
)()()( YVXVYXV +=+ , which is true so long as X and Y are independent. So the

variance of the samples means is nσ2/n2 = σ2/n, and the standard deviation is the
square root of this.

If we know the population SD, σ, we can test hypotheses very simply with a Z test

It’s unusual for us to know the population standard deviation, σ. But sometimes we
do. For example, we know that IQ in the general population has a mean of 100 and a
standard deviation of 15. In this case, we saw (see p. 15) that we could calculate the
probability that a single individual with an IQ of 89 came from the general popula-
tion. We could calculate a Z score:

σ
µ−= x

z

which in this case would be z = (83 – 100)/15 = –1.13; we could look this up in our
tables (p. 123) and find that the probability that a single IQ score of 83 or less could
come from the general population is 0.129. We would not reject the null hypothesis
that this subject was drawn from the general population.
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But suppose that we have five subjects, and their IQs are 89, 94, 73, 82, and 77. Are
these five subjects drawn from a healthy population (mean 100, SD 15)? The null
hypothesis is that they are (null hypothesis: population mean µ = 100). So what we
do is this. We calculate our sample mean x  = 83 and sample size n = 5. We know
from the central limit theorem that if we repeatedly took samples of size 5 from a
population with µ = 100 and σ = 15, that these sample means ( x ) themselves would
have a mean of xµ  = 100 and a standard deviation xσ = 15/√5 = 6.71. We also

know from the central limit theorem that the distribution of the sample means ( x )
approaches a normal distribution. So we could obtain a Z score again:

53.2
71.6

10083 −=−=
−

=
−

=

n

xx
z x

x

x

σ
µ

σ
µ

Using our tables of Z scores (p. 123), we’d find that the probability of obtaining a Z
score of –2.53 or more extreme is 0.0057. If we set our α to be 0.05 with a two-
tailed test (α = 0.025 each tail), we’d reject the null hypothesis, and conclude that
our group of five subjects were not drawn from the general healthy population; the
group mean of 83 was significantly different from 100. (It should be fairly obvious
that our likelihood of finding a significant difference depends on the sample size n;
larger samples have more power to detect a significant difference.)

More often, we do not know the population SD, σ, and can’t use a Z test…

It’s much more common that we don’t know the population SD, σ, or the population
variance, σ2, so we have to estimate it from the sample SD, s, or the sample variance,
s2. Unfortunately, this complicates matters a bit. Although in the long run, the aver-
age value of the sample variance s2 is equal to σ2 (it’s an unbiased estimator; see p.
13→ if you’re interested), the distribution of s2 is positively skewed. That means that
although the average value of s2 equals σ2, more than half the values of s2 are less
than σ2 (and less than half are more than σ2 — though the values that are more than
σ2 are much more than σ2, to balance things out). So any individual value of s2 is
likely to underestimate σ2. (In fact, s2 has a χ2 distribution; see p. 81.)

What we have to do to compensate is to change from a Z test to something called a t
test. Instead of calculating a Z score based on σ:

n

x

n

xx
z

x

x

2σ

µ
σ

µ
σ

µ −=−=
−

=

we calculate a t score based on s:

n

s

x

n

s
x

s

x
t

x

x

2

µµµ −=−=
−

=

So just as a Z score tells you how far a score (in this case x ) is from the mean (in
this case xµ ) in terms the number of standard deviations (in this case xσ ), a t score

tells you how far a score (in this case x ) is from the mean (in this case xµ ) in terms

of the number of estimated standard deviations (in this case xs ).

But since s2 is more likely than not to be smaller than σ2, t is more likely than not to
be bigger than z. (This also means that if you tried to calculate a Z score but incor-
rectly used s2 rather than σ2, your test would be too liberal.) The t score is not nor-
mally distributed; it has its own distribution. This distribution was worked out by
William Gossett in 1908. Gossett worked for Guinness and they wouldn’t let him
publish under his own name, so he published under the pseudonym of Student. The
distribution is therefore called Student’s t distribution. There are in fact infinitely
many t distributions, one for each degree of freedom (df; see below). For a one-
sample t test, the number of degrees of freedom is n – 1, where n is the number of
observations in the sample. As n → ∞, df → ∞, the distribution of s2 becomes less
and less skewed, and the t distribution becomes more and more like the normal dis-
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tribution, Z. Anyway, we don’t routinely need to calculate the distribution of t be-
cause we have it in the form of pre-calculated tables (p. 125). If our calculated value
of t exceeds the relevant critical value for the appropriate number of degrees of free-
dom and α, we reject the null hypothesis.

More formally, when we calculate a Z test using 

n

x
z

2σ

µ−= , we assume that x  is

normally distributed; µ is a constant, and so is σ2; therefore, the z score we calculate

is also normally distributed. When we calculate 

n

s

x
t

2

µ−= , we assume that x  is

normally distributed (either as a consequence of the underlying scores x being nor-
mally distributed, or as a consequence of the Central Limit Theorem as the sample
size becomes large; see p. 57). Again, µ is a constant, and so is n, but this time, as-
suming the underlying scores are normally distributed, s2 has a χ2 distribution (see p.
81). Therefore, we obtain something (t) that is a normally-distributed variable di-
vided by the square root of a χ2-distributed variable; that’s what the t distribution
really is.

Degrees of freedom (df)

When we begin, we have n observations, and all of them are free to vary. When we
obtained the sample variance, s2, we calculated the deviations of each observation
from the sample mean ( xx − ), rather than from the population mean (x – µ). Be-
cause the sum of the deviations about the mean, ∑ − )( xx , is always zero, only n – 1

of the deviations are free to vary. We’ve ‘used up’ one of our degrees of freedom by
calculating x  using data from our sample. So s2 is based on n – 1 degrees of free-
dom, and so is our t statistic.

3.12. Supplementary material: deriving the two-sample t test

The distribution of differences between means; deriving the two-sample t test

When we want to compare two groups, what we do is take two samples from two
different populations, X1 and X2, and ask if the two populations have the same mean
(µ1 = µ2) or not (µ1 ≠ µ2). Suppose the populations have means µ1 and µ2 and vari-

ances 2
1σ  and 2

2σ . If we draw pairs of samples, of size n1 from population X1 and of
size n2 from population X2, we can calculate the difference between each pair of
sample means 1x  and 2x , or 21 xx − . If we draw many pairs of samples, we can

calculate the distribution of the differences between sample means, also called
the sampling distribution of differences between means. The mean difference be-
tween sample means (µd) will be given by

2121
µµµµ −== −xxd

From the central limit theorem, we know that the variance of sample means from X1

will be 
1

2
12

1 nx
σσ = , and similarly 

2

2
22

2 nx
σσ = . The variance sum law states that the

variance of a sum or difference of two variables is:

21
2
2

2
1

2 2
21

σρσσσσ ++=+ XX

21
2
2

2
1

2 2
21

σρσσσσ −+=− XX

where ρ is the correlation between them; therefore, for two independent variables (ρ
= 0), the variance of the sum or difference of the variables is the sum of their vari-

ances ( 2
2

2
1

2
21

σσσ +=± XX ). Therefore, the variance of the difference between our

two means will be
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2

2
2

1

2
122

21 nnxxd
σσσσ +== −

so the corresponding standard deviation is

2

2
2

1

2
1

21 nnxxd
σσσσ +== −

This is called the standard error of the difference between means (SED). We
now know the mean and SD of the distribution of the differences between sample
means; all that’s left is to determine the shape of this distribution. Another theorem
tells us that the sum or difference of two independent normally-distributed variables
is itself normally distributed; we’re basically done. If we knew the population SDs
σ1 and σ2 — which is very unusual! — we could perform a Z test:

2

2
2

1

2
1
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… but that’s very unlikely. So just as we used a t test in place of a Z test earlier,
when we had to estimate σ based on the sample SD, s, we want to do the same thing
now. Only there’s a problem. Remember that the shape of the t distribution depends
on how skewed our estimate of the standard error is — that is, on the number of de-
grees of freedom of our estimate (s). But in this two-sample t test, we have two dif-
ferent variances in the denominator. What do we do?

The simplest thing to do is to assume that the two populations have equal variances

( 2
2

2
1 σσ = ). We can denote this variance simply 2σ , and its estimate 2

ps  (the

‘pooled’ variance estimate, explained in more detail below). Then we only need to
worry about a single estimate, and its skewness (df), so we can use this formula in
place of the Z test shown above:
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Generally, the null hypothesis is that the means are the same (µd = µ1 – µ2 = 0), so
we can simplify this a bit further:
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and there we have the formula that I stated earlier. What about the degrees of free-
dom? Well, we started with n1 + n2 degrees of freedom. We’ve calculated two sam-
ple variances, so we’ve lost 2 df; we’re left with (n1 + n2 – 2) df.

Pooling variances when n1 ≠≠≠≠ n2

We’ve seen that this use of the t test for two independent samples requires the as-
sumption that the two samples come from populations with equal variances

( 2
2

2
1 σσ = ). We denoted this variance simply σ2. This is often a reasonable assump-

tion, particularly if we start with two groups of equivalent subjects (⇒ equal vari-
ances) and then do something to one or both groups that affects the mean of those
groups; the variances will often be relatively unaffected. Anyway, when we use the t

test, we are using the sample variances 2
1s  and 2

2s  to estimate σ2. If our sample sizes

are not equal (n1 ≠ n2), then the larger sample will probably give us a better estimate

of σ2 (both 2
1s  and 2

2s  are meant to be estimating the same thing, since we’re as-

suming 2
2

2
1 σσ = , and the larger sample contains more information). Accordingly,

we would be better off with a weighted average, in which the sample variances are
weighted by their degrees of freedom (n – 1), the number of observations on which
they are based. This weighted average is usually called the pooled variance esti-

mate, 2
ps :
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If we use that in our t test, we get the general formula for the two-sample unpaired t
test (equal variance version) that we’ve just seen:
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As always, this formula for t involves dividing the difference between means by the
standard error of the difference between means (SED).

Another way of thinking about the pooled variance is in terms of sums of squares
(we mentioned this on p. 36→ in some of the wavy-line bits to do with what r2

means in correlation). A variance is a ‘sum of squares’ (the sum of squared devia-
tions from the mean) divided by the degrees of freedom. So when we multiple each
sample variance by its own df we get the sample sums-of-squares. We also said that
you could only add sample variances meaningfully when they were based on the
same df, but you can add sums of squares any way you like — so to calculate the
pooled variances, we convert the sample variances to the sample sums-of-squares,
add them together, and divide by the overall number of df to get the overall (pooled)
variance.

If the sample sizes are equal (n1 = n2 = n), then this formula can be simplified like
this:
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The two-sample t test with unequal sample variances

If the two sample variances are not equal, then we can’t make our simplifying as-

sumption that 2
2

2
1 σσ = . Unfortunately, this means we have two different variance

estimates in the denominator for our formula — both of which have their own χ2

distribution — whereas the t distribution is predicated on dividing by something in-
volving a single variance estimate. As a result, the resulting statistic will not neces-
sarily have a t distribution this time. It is therefore written t′:
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However, we know that the sum of our two estimated standard errors can, at most,
be only as skewed (lopsided) as the more lopsided of our two estimates, which is the
one with the lower df. In other words, the probability of getting extreme values of t′
must be no more than the probability of getting extreme values of a t score with the
lower of the two dfs. Consequently, the usual procedure for calculating this test by
hand is to look up the value of t′ in tables of t, but using the smaller of (n1 – 1) and
(n2 – 1) as the number of degrees of freedom. A computer would calculate some-
thing more accurate for the df, which lies somewhere between the smaller of (n1 – 1)
and (n2 – 1) and their sum, (n1 + n2 – 2). This is called the Welch–Satterthwaite ap-
proximation to the t′ distribution (Welch, 1938; Satterthwaite, 1946), but it’s too
complicated to do by hand.
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3.13. Examples 3: parametric difference tests

Interval estimation from samples (and a one-sample t test)

Q1. The following ten measurements were made of the light intensity at which a
glare source impaired reading (in log trolands). Within what interval can we infer
that the true mean (i.e. population mean, or mean of a very large number of such
measurements) lies, with a 90% probability of being right?

4.32 5.07 4.29 6.02 5.11 4.93 3.98 4.83 5.50 6.10

Q2. In an experiment to measure the speed of discriminating words from non-words,
the following 12 discrimination times (in ms) were recorded:

605 460 752 321 550 612 700 680 800 491 523 594

Within what interval is there a 95% probability that the true (population) mean lies?

Q3. In an experiment on judging the equality of weights the following ten values
were set by a subject as being equal to 100 g. What is the 95% confidence interval
within which the true (population) mean lies? Is the mean significantly different
from 100 at the 5% level?

100.2 96.3 110.9 89.3 95.0 98.5 105.6 99.8 102.4 97.6

Two-sample t test

These examples also appear in the ‘Examples 4’ section for nonparametric differ-
ence tests — and you might like to try a few more of the examples from ‘Examples 4’
using t tests as practice.

Q4. A traffic survey measures the speed of 15 cars chosen randomly each morning
over a quarter-mile stretch of road. One ordinary Monday these were (in m.p.h.):

32 45 37 41 28 36 40 49 34 36 33 30 40 38 39

On the next Monday in another ordinary working week on which there were similar
weather conditions, a ‘simulated accident scene’ was placed 50 yards before the start
of the measurement area, and the speeds of fifteen cars measured were:

33 27 38 35 30 32 29 20 37 44 31 36 30 34 32

Did the simulated accident significantly reduce drivers’ speeds?

Q5. Twelve student volunteers performed a card-sorting task: they sorted 250 cards
on one day, 500 on the next day starting 20 min after having ingested a pharmaco-
logically-active substance, and 250 on a third day. The table gives the number of er-
rors in sorting they made on the second day, and the total errors on the first and third
days. Does the substance have any effect on card-sorting accuracy?

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Day 2 12 17 9 3 16 10 28 14 5 19 20 8
Days 1 & 3 16 16 11 5 10 13 36 11 8 11 20 14

Q6. The short-term memory span for digits was measured for a number of students
specializing in arts (A) and science (S) subjects. The table gives each student’s mean
span with his subject group:

A A S A S S S S A S A A S S A
5.8 7.3 7.1 6.9 8.2 5.9 6.4 6.8 7.7 6.0 6.3 5.2 6.2 6.6 7.4

A S S S A S A A S S
6.5 7.0 7.2 6.1 7.9 7.4 7.0 6.2 6.4 8.0
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Is there a significant difference between the digit spans of arts and science students?

Q7. Two groups of subjects are shown an ambiguous figure, and the time taken until
the first reversal of its appearance is measured for each subject. One group had pre-
viously seen the figure in a form strongly biased to show one of its alternative ap-
pearances; the other had no such pre-exposure (control group). The times to first re-
versal (in s) were:

Pre-exposure group 7.4 7.0 6.8 8.2 6.5 7.5 5.8 6.3 7.1 6.6
Control group 6.2 7.3 5.6 5.9 6.0 6.9 6.1 5.4

Does pre-exposure to the biased figure lengthen the time to first reversal?

Q8. In an experiment in which briefly-flashed letters were superimposed on either a
random or a checkerboard black-and-white pattern, one subject gave the following
results:

Letter a c e n o s u v x z
% correct recognitions:
On random field 67 43 49 31 40 52 35 74 83 77
On checkerboard 79 51 58 28 44 52 28 87 90 81

Do the checkerboard and random fields have significantly different effects on the
visibility of the letter?

F test

Do the variances of the following pairs of groups differ at the .10 level?

Q9. Group A: –10 4 3 –5 12 6 7 1 –8
Group B: 1 4 2 –1 5 –2 0 3

Q10. Group A: 20 47 150 10 60 120
Group B: 60 65 45 30 25
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4. Difference tests — nonparametric

Objectives

This time, we’ll discuss some nonparametric difference tests. If you recall, non-
parametric tests generally have lower power than parametric tests, but make fewer
assumptions about the distribution of the data, so they may be valid when parametric
tests are not. These are the rough equivalents of the parametric and nonparametric
tests we cover:

Parametric test Equivalent nonparametric test
Two-sample unpaired t test Mann–Whitney U test
Two-sample paired t test Wilcoxon signed-rank test with matched pairs
One-sample t test Wilcoxon signed-rank test, pairing data with a fixed value

They assume that the variable is measured on at least an ordinal scale. (That’s it.)

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

4.1. Background

Nonparametric tests often operate on the rank order of a set of numbers, rather than
on the numbers themselves. This also means that nonparametric tests are less af-
fected by outliers (a few extreme scores) than parametric tests. Outliers may make
parametric tests less powerful (they increase the variance as well as distorting the
mean), sometimes less powerful than the nonparametric equivalent.

It should be obvious how ranking ‘removes’ information about the distribution. The
scores {2,8,10,12,14,24} might have come from a normal distribution and the scores
{1,2,3,100,101,102} might have come from a bimodal distribution, but both reduce
to the ranks {1,2,3,4,5,6}.

Medians are less sensitive to outliers
than means.

Ranking removes information about the
distribution of scores.
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How to rank data (repeated from p. 33)

Suppose we have ten measurements (e.g. test scores) and want to rank them. First,
place them in ascending numerical order:

5 8 9 12 12 15 16 16 16 17

Then start assigning them ranks. When you come to a tie, give each value the mean
of the ranks they’re tied for — for example, the 12s are tied for ranks 4 and 5, so
they get the rank 4.5; the 16s are tied for ranks 7, 8, and 9, so they get the rank 8:

X: 5 8 9 12 12 15 16 16 16 17
rank: 1 2 3 4.5 4.5 6 8 8 8 10

4.2. The Mann–Whitney U test (for two independent samples)

This is a nonparametric analogue of a two-sample unpaired t test. Its null hypothesis
is that the two samples were drawn from identical populations (rather than the t
test’s null hypothesis that the two samples were drawn from populations with the
same means). So a ‘significant’ Mann–Whitney result might be due to a difference
between the central tendency of the two populations (like a ‘significant’ t test) but it
might also have been due to some other difference, such as a difference in the distri-
butions of the populations. If we assume the distributions are similar, a significant
Mann–Whitney test suggests that the medians of the two populations are different.

Basic logic of the test

Let’s suppose we have two samples with n1 and n2 observations in each (n1 + n2 = N
observations in total). We can rank them, lowest to highest, from 1 to N. If the two
samples come from identical populations, the sum of the ranks of ‘sample 1’ scores
is likely to be about the same as the sum of the ranks of ‘sample 2’ scores. If, on the
other hand, sample 1 comes from a population with generally much lower values
then sample 2, then the sum of the ranks of ‘sample 1’ scores will be lower than the
sum of the ranks of ‘sample 2’ scores.

In the test, shown below, the rank sums are first ‘corrected’ for the fact that larger
groups tend to have larger rank sums simply because they have more observations;
the resulting ‘corrected’ numbers are called U1 and U2. So if the groups are very dif-
ferent, one of these numbers will be very high and the other will be very low; if the
groups are very similar, both U1 and U2 will be close to each other. Since they are
related, though, we simply pick the smaller of the two, call it U, and look it up to see
if it’s smaller than some critical value. (We could equally have picked the larger of
the two and looked it up in a different set of tables to see if it was greater than a
critical value, but we haven’t supplied those tables!)

Calculating the Mann–Whitney U statistic

1. Call the smaller group ‘group 1’, and the larger group ‘group 2’, so n1 < n2.
(If n1

 = n2, ignore this step.)
2. Calculate the sum of the ranks of group 1 (= R1) and group 2 (= R2).

3. 
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5. The Mann–Whitney statistic U is the smaller of U1 and U2.

Check your sums: verify that U1 + U2 = n1n2 and 
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It doesn’t matter which numbers you call U1 and U2, since all you do is take the
smaller. Incidentally, why this formula for R1 + R2? Because if you add consecutive

numbers from 1 to x, the total is 
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Handy hint: if the ranks don’t overlap at all

If the ranks of the two groups do not overlap, then U = 0. This can save you some
time in calculation. For example, if the ranks of group 1 are {1, 2, 3, 4, 5} and the
ranks of group 2 are {6, 7, 8, 9}, then U = 0.

Determining a significance level from U

If n2 is small, look up the critical value of U in tables (see p. 128) — values of U
smaller than the critical value are significant. If n2 > 20, the U statistic is ap-

proximately normally distributed; mean 
2

21nn=µ , variance 
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So we can calculate a Z score:
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and test that in the usual way (see p. 15).

If there is a significant difference, which way round is it?

When you calculate a t test, if you find a significant difference, then it’s obvious
‘which way round’ the difference — you’ve already calculated the group means, so
you can instantly see which group has the larger means (and the t test has told you
that this is a significant difference). But with the Mann–Whitney U test, rejection of
the null hypothesis tells you that the samples are unlikely to have come from the
same population — and if you assume that the samples have the same distribution
(see above), then a significant U tells you that the medians are different. But to es-
tablish which group actually has the larger median, you have to calculate the me-
dians of each group. You can’t rely on the rank sums — if the group sizes are une-
qual, it’s not always the case that the group with the larger rank sum has the larger
median.

Example

Borrowing an example from Howell (1997, p. 651), suppose we imagine that we
collect information on birth weights of babies whose mothers received prenatal care
either from the first trimester onwards or from the third trimester onwards. Suppose
these birthweights, in kg, were {1.68, 3.83, 3.11, 2.76, 1.70, 2.79, 3.05, 2.66, 1.40,
2.775} for the first trimester group and {2.94, 3.38, 4.90, 2.81, 2.80, 3.21, 3.08,
2.95} for the third trimester group. If we chose to calculate a Mann–Whitney test on
these data, we would calculate the ranks as {2, 17, 14, 5, 3, 7, 12, 4, 1, 6} for the
first trimester group (n = 10, rank sum = 2 + 17 + 14 + … = 71) and {10, 16, 18, 9,
8, 15, 13, 11} for the third trimester group (n = 8, rank sum = 100). We’d therefore
call the third trimester group ‘group 1’, because it’s the smaller, and the first tri-
mester group ‘group 2’. So we have n1 = 8, n2 = 10, R1 = 100, R2 = 71. From this we
can calculate U1 = 64, U2 = 16. The Mann–Whitney U is the smaller of these, i.e. 16.

From our tables (see p. 128) we can find that the critical value of U for these values
of n and a two-tailed test at α = 0.05 is 18. Our U is less than this, so it’s significant;
we reject the null hypothesis, and say that there’s a difference between the birth-
weights of our two sets of babies, p < 0.05.

If our ns had been larger, we could have calculated a Z score. Pretending for a mo-
ment that our ns were larger, for these data z = –2.13, corresponding to p = 0.033.
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For the same data, a two-sample unequal-variance t test would have given p = 0.063,
and a two-sample equal-variance t test would have given p = 0.066. This is an ex-
ample when a nonparametric test has more power because the assumptions of the
parametric test — in this case normality of the underlying distribution — were not
met.

4.3. The Wilcoxon matched-pairs signed-rank test (for two related samples)

This is a nonparametric test for paired scores. It’s the nonparametric analogue of the
t test for related samples (the paired t test). The null hypothesis is that the distribu-
tion of differences between the pairs of scores is symmetric about zero. (Since the
median and the mean of a symmetric population are the same, the null hypothesis
can be restated either as ‘the differences between the pairs of scores are symmetric
with a mean and a median of zero’.)

Let’s do this as a worked example (borrowed from Howell, 1997, p. 653). Suppose
10 subjects have their systolic blood pressure measured (BP1), engage in a running
program for 6 months, and then have their systolic blod pressure measured again
(BP2). We can calculate the difference for each subject as BP2 – BP1. If there’s no
difference between the ‘before’ and ‘after’ scores, there should be about as many
differences that are positive as there are differences that are negative…

Calculating the Wilcoxon matched-pairs signed-rank statistic, T

The procedure is:
1. Calculate the difference scores.
2. Ignore any differences that are zero.
3. Rank the difference scores, ignoring their sign (+ or –).
4. Add up all the ranks for difference scores that were positive; call this T+.
5. Add up all the ranks for difference scores that were negative; call this T–.
6. The Wilcoxon matched-pairs statistic T is the smaller of T+ and T–.

Check your sums: verify that 
2

)1( +=+ −+ nn
TT .

Here’s a worked example:
Before (BP1): 130 148 170 125 170 130 130 145 119 160
After (BP2): 120 148 163 120 135 143 136 144 119 120

Difference (BP1 – BP2): 10 0 7 5 35 –13 –6 1 0 40

Rank of difference (ignoring zero differences and
sign):

5 4 2 7 6 3 1 8

‘Signed rank’ 5 4 2 7 –6 –3 1 8
Ranks of positive differences: 5 4 2 7 1 8
Ranks of negative differences: 6 3

The ‘signed rank’ row is what gives the test its name; it’s what you get when you
put the signs (+ or –) from the difference scores back on the ranks you calculated by
ignoring those signs. But you don’t need to do this to calculate T.

The difference scores don’t appear to be anything like normally distributed, so we
want to use a distribution-free (nonparametric) test. We can calculate n = 8 (since
we ignore zero differences), T+ = 5 + 4 + 2 + 7 + 1 + 8 = 27, and T– = 6 + 3 = 9.
Therefore the Wilcoxon statistic T = 9.

Determining a significance level from T

For small n, look up the critical value of T in tables (see p. 129) — values of T
smaller than the critical value are significant. If n > 20, the T statistic is approxi-

mately normally distributed; mean 
4

)1( += nnµ , variance 
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we can calculate a Z score:
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and test that in the usual way (see p. 15).

In our example, since n = 8, our tables (p. 129) tell us that the critical value of T is 6
(for α = 0.05 two-tailed). Our T was 9. Therefore, the difference in blood pressure
was not significant (p > 0.05).

If there is a significant difference, which way round is it?

In the case of the Wilcoxon test, it is always true that the set of scores with the larger
rank sum has the larger median. So if the Wilcoxon test gives you a significant result
and T+ > T–, then the difference between scores is significantly greater than zero; if
T+ < T–, then the difference between scores is significantly less than zero.

4.4. Using the Wilcoxon signed-rank test as a one-sample test

The Wilcoxon signed-rank test may also be used to test whether the median of one
group of scores is significantly difference from some expected value M. In this case,
the null hypothesis is that the median is equal to M. Calculate a difference score (x –
M) for each score x, and proceed as above.

4.5. Supplementary and/or advanced material

Tied ranks

The formulae given here for the Mann–Whitney and Wilcoxon tests should actually
be modified if there are tied ranks (i.e. if two observations have the same value), and
a computer would do this for us, but since there are no major problems if there
aren’t very many tied ranks and the formulae are complex that way, we simply ig-
nore the problem when calculating U or T by hand.

The Wilcoxon rank-sum test (not the same as the Wilcoxon signed-rank test!)

There are actually two tests based on the logic used for the Mann–Whitney U test:
they are the Mann–Whitney U test itself and the Wilcoxon rank-sum test. They’re di-
rectly equivalent: both will give the same p value. (Some people even mix the names
up, calling U a Wilcoxon rank-sum statistic, which confuses everybody.) The
Mann–Whitney U test is more popular and has a name that’s not so easily confused
with the Wilcoxon signed-rank test. However, the Wilcoxon rank-sum calculations
make it a bit clearer how we get a statistic out of the sums of a set of ranks, so I’ve
included it here only in case you want to understand how the two tests work.

1. Call the smaller group ‘group 1’, and the larger group ‘group 2’, so n1 < n2. (If
n1

 = n2, ignore this step.)
2. Calculate the sum of the ranks of group 1 (= R1) and group 2 (= R2).
3. If n1 < n2, then WS = R1. If n1 = n2, then WS = whichever of R1 and R2 is smaller.
4. Calculate SS WnnnW −++=′ )1( 211 .

Now we evaluate WS and SW ′  using tables (not supplied here). The smaller WS is, the

more likely it is to be significant. WS will be significant (small) if the smaller group
(group 1) contains significantly smaller-than-average ranks, or if the larger group
(group 2) contains significantly larger-than-average ranks, i.e. if group 1 < group 2.

SW ′  is the sum of the ranks we would have found if we reversed our ranking and
ranked from high to low; it will be significant (small) if group 2 > group 1. Nor-
mally we want to test for a two-tailed difference between groups; we’d then pick
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whichever of WS and SW ′  is the smaller and look up the critical values in tables

(doubling α if the table gives one-tailed values).

Two other ways of calculating the Mann–Whitney U statistic

This shows the equivalence of the Wilcoxon rank-sum and Mann–Whitney tests:
1. Compute WS and SW ′  as above. Let SW ′′  be whichever of the two is larger.

2. The Mann–Whitney statistic SW
nnn

U ′′−++=
2

)12( 211

A third method is this:
1. For each observation in group 1, count the number of observations in group 2

that exceed it (score 0.5 for equality). Sum these values to obtain U1.
2. Do the same for group 2 to obtain U2.
3. The Mann–Whitney statistic U is the smaller of U1 and U2.
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4.6. Examples 4: nonparametric difference tests

Many of these examples are also suitable for further practice with t tests.

Mann–Whitney U test

Find the value of U for each of the following pairs of groups of observations, and
discover whether the difference between the groups is significant at the 0.05 level,
two-tailed.

Q1. Group A: 43 39 57 62
Group B: 51 63 70 55 59 66

Q2. Group A: 4.5 2.3 7.9 3.4 4.8 2.7 5.6 6.1 3.5
Group B: 3.5 4.9 1.1 2.5 2.3 4.1 0.7

Q3. Group A: 650 710 437 520 583 492 555
Group B: 573 617 648 861 732 689 741

Q4. Group A: 43 70 51 35 60 77 48 62 57 75
Group B: 90 45 73 64 86 59 88 72 89

Q5. Group A: 48 60 75 86 79 39 52 75 93 57
62 71 69 80 69 62 70

Group B: 54 93 82 67 81 77 91 79 63 74
99 84 76 68 71 90

Wilcoxon matched-pairs signed-rank test

In the following examples, find the significance level of the differences between the
groups in (a) a one-tailed and (b) a two-tailed test. The groups are arranged in
matched pairs, the members of each pair being shown one above the other.

Q6. Group A: 4.5 2.3 7.9 6.8 5.3 6.2 5.7
Group B: 4.3 2.7 9.0 6.7 5.6 10.1 6.9

Q7. Group A: 127 163 149 101 137 125 141 142 133
Group B: 135 170 181 111 151 120 138 153 140

Q8. Group A: 5 3 7 11 9 4 3 2
Group B: 7 4 6 12 6 10 9 3

Q9. Group A: 14 17 19 25 33 15 17 19 23
Group B: 11 17 15 26 19 14 13 20 18

Mixed examples

(These are all fictitious experiments!)

Q10. A traffic survey measures the speed of 15 cars chosen randomly each morning
over a quarter-mile stretch of road. One ordinary Monday these were (in m.p.h.):

32 45 37 41 28 36 40 49 34 36 33 30 40 38 39

On the next Monday in another ordinary working week on which there were similar
weather conditions, a ‘simulated accident scene’ was placed 50 yards before the start
of the measurement area, and the speeds of fifteen cars measured were:

33 27 38 35 30 32 29 20 37 44 31 36 30 34 32

Did the simulated accident significantly reduce drivers’ speeds?
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Q11. In a reaction-time experiment, the stimulus to react to was a recorded voice,
sometimes the same voice that had just given a ‘ready’ signal, and sometimes a dif-
ferent one. Twelve subjects’ results were as follows (RTs in ms):

Subject 1 2 3 4 5 6 7 8 9 10 11 12
RT to same voice 302 287 350 296 411 337 326 343 315 371 299 316
RT to different voice 340 302 359 352 408 361 328 340 347 392 326 333

Is there a significant difference in RT between the two conditions?

Q12. Twelve student volunteers performed a card-sorting task: they sorted 250 cards
on one day, 500 on the next day starting 20 min after having ingested a pharmaco-
logically-active substance, and 250 on a third day. The table gives the number of er-
rors in sorting they made on the second day, and the total errors on the first and third
days. Does the substance have any effect on card-sorting accuracy?

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Day 2 12 17 9 3 16 10 28 14 5 19 20 8
Days 1 & 3 16 16 11 5 10 13 36 11 8 11 20 14

Q13. A survey was conducted to determine people’s opinions of selected foreign
countries. The overall order of preference among the sample interviewed (starting
with the most preferred) was Australia, Canada, Denmark, New Zealand, Holland,
Germany, France, Zimbabwe, Spain, South Africa, Italy.

Was a significant preference shown for Commonwealth and ex-Commonwealth
countries on the one hand over European countries on the other?

Q14. Twelve cod-graders grade the following numbers of cod per hour:

1382 1545 1106 1761 1560 1669 1292 1418 1477 1351 1523 1618

After a number of sessions working through the teaching programme Defect Detec-
tion in White Fish Processing: Intermediate Level, their cod grading rates were
(taking the graders in the same order as above):

1390 1422 1119 1578 1553 1682 1101 1376 1468 1099 1478 1564

Has the teaching programme had any effect on their grading rates?

Q15. The short-term memory span for digits was measured for a number of students
specializing in arts (A) and science (S) subjects. The table gives each student’s mean
span with his subject group:

A A S A S S S S A S A A S S A
5.8 7.3 7.1 6.9 8.2 5.9 6.4 6.8 7.7 6.0 6.3 5.2 6.2 6.6 7.4

A S S S A S A A S S
6.5 7.0 7.2 6.1 7.9 7.4 7.0 6.2 6.4 8.0

Is there a significant difference between the digit spans of arts and science students?

Q16. Two groups of subjects are shown an ambiguous figure, and the time taken
until the first reversal of its appearance is measured for each subject. One group had
previously seen the figure in a form strongly biased to show one of its alternative
appearances; the other had no such pre-exposure (control group). The times to first
reversal (in s) were:

Pre-exposure group 7.4 7.0 6.8 8.2 6.5 7.5 5.8 6.3 7.1 6.6
Control group 6.2 7.3 5.6 5.9 6.0 6.9 6.1 5.4

Does pre-exposure to the biased figure lengthen the time to first reversal?
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Q17. Twelve people are engaged in ‘experimental conversation’. In the ‘positive’
condition they are ‘reinforced’ by an approving ‘uh-huh’ from the experimenter
whenever they use the personal pronoun ‘I’. In the ‘negative’ condition they are
‘punished’ by a disapproving ‘huh’ when they say ‘I’. The rates of ‘I’ emission in
the experiment are as follows (responses in a 10-min interval):

Subject A B C D E F G H I J K L
Pre-exposure group 17 62 20 11 31 25 15 38 47 22 26 8
Control group 14 68 19 3 27 26 9 22 40 19 20 11

Does reinforcement have the effect you would expect?

Q18. Two new-born bats are taken from each of a number of litters. One of each
pair is kept in a cage, the other being allowed to live freely in the experimenter’s of-
fice (despite protests from the occupants of nearby offices). After one month, their
moth-catching abilities are tested in a standard Batman™ experimental chamber.
The number of moths caught (out of a possible total of 25) are given below. Does
experience in the first month of life have any effect on moth-catching ability in bats?

Litter number 1 2 3 4 5 6 7 8 9 10
Caged bat 8 16 0 10 6 12 8 2 15 9
Free-living bat 18 25 17 6 11 11 12 10 15 14

Q19. The following are the scores on the Seashore Test of Musical Aptitude of a
number of 10-year-olds:

Right-handed children 28 54 37 102 66 30 41 56 34 72
Left-handed children 46 50 83 27 40 39 61 33 59 87

Do these data reveal a relationship between handedness and musical aptitude as
measured by the Seashore Test?

Q20. In an experiment in which briefly-flashed letters were superimposed on either
a random or a checkerboard black-and-white pattern, one subject gave the following
results:

Letter a c e n o s u v x z
% correct recognitions:
On random field 67 43 49 31 40 52 35 74 83 77
On checkerboard 79 51 58 28 44 52 28 87 90 81

Do the checkerboard and random fields have significantly different effects on the
visibility of the letter?

Q21. The following were all Republican candidates in the electoral contests for
various local offices in the city of Meltingpot, Ohio. Elected: Aaronson, Blomberg,
Evans, Horsley, Jaspers, McTavish, O’Shaughnessy, Scorbini. Defeated: Neuhaus,
Pickford, Rodsky, Toft, Verploot, Wilhelm, Young, Zotterman.

The ballot papers were organized alphabetically. Do these results show a relation
between position on the ballot paper and electoral success?

Q22. A number of rats were assessed on the Nebraska Rodent Personality Scale, and
the ten most introverted and the ten most extroverted were selected. They were
trained to criterion on a discrimination task, and the number of trials required for
extinction was then counted for each rat:

Introverted rats 23 18 107 16 35 40 28 21 46 21
Extroverted rats 62 17 33 25 38 19 44 29 80 36

Is there any connection shown between rate of extinction and the extroversion scale
of the NRPS?
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Q23. The crew of a radar station work four-hour shifts. The following are the num-
bers of guided missiles falsely reported by each operator in the first and last half-
hours of her shift:

Operator A B C D E F G H I J K L
First half hour 6 3 0 2 4 3 8 5 0 1 7 2
Last half hour 5 8 3 4 2 7 12 9 2 0 5 8

Are operators significantly more prone to make false reports at either end of their
shifts?

Q24. Sixteen subjects made settings of the same colour discrimination threshold on
two successive days. The differences between the two settings made were as follows
(in nanometres). Is there evidence of improvement (improvement = positive differ-
ence score)?

0.3 –0.6 1.2 2.3 –1.0 3.5 –2.0 1.1 0.8 1.4 2.7 –1.5 –2.6 2.4 3.1 1.9

Mann–Whitney test using a normal approximation

Q25. In a Mann–Whitney U test with n1 = 20 and n2 = 60 we find U = 400. What is
(a) the one-tailed probability, and (b) the two-tailed probability of getting a value of
U as extreme as this? (See instructions on page 128 in the Tables and Formulae
section giving critical values of U.)
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5. χ2 test

Objectives

We’ll cover the chi-square (χ2) test for categorical data (goodness-of-fit test) and
extend it to examine whether two categorical variables are related (contingency test).
By the way, chi is pronounced kai, not chai. Related supplementary material is pre-
sented for those who are interested.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

5.1. The chi-square (χ2) test

One categorical variable, two categories

The χ2 test, sometimes called Pearson’s χ2 test, is all about analysing categorical
data. Suppose we ask 100 people to choose between chocolate and garibaldi biscuits
(so every person falls into one of two categories); 65 choose chocolate and 35
choose garibaldi. Does this differ from chance, i.e. a 50:50 split? The expected val-
ues based on the null hypothesis are 50 chocolate and 50 garibaldi. The observed
values are 65 and 35. From this, we can calculate the χ2 statistic:

∑ −=
E

EO 2
2 )(χ

where O is the observed frequency in each category, and E is the expected fre-
quency. We sum over all the categories. A big χ2 means that the observed fre-
quencies differ considerably from the expected frequencies. (Significant values
of χ2 are big. Non-significant values of χ2 are close to zero.) If we have c catego-
ries, we have c – 1 degrees of freedom.

This is called a goodness-of-fit test. It asks whether the data (observed values, O)
are a good fit to some model (expected values, E).

So in this example, 9
50

)5035(

50

)5065( 22
2 =−+−=χ . We have two categories, but

since we know n (100), then as soon as we know the frequency of one category
(chocolate) we automatically know the frequency of the other (garibaldi). So we

have only 1 df. All we need now is to know the critical value of 2
1χ  for our chosen

value of α (say 0.05); our handy statistical tables (see p. 130) will tell us that this is
3.84. Since our χ2 value was 9, we can reject the null hypothesis and say that peo-

ple’s preferences differed from chance ( 2
1χ = 9.0, p < .05). If we were using a com-

puter, we could derive an exact p value for our χ2 value of 9 — it’s 0.0027 — so we
could report our biscuit analysis like this: ‘The group’s preference differed from

chance ( 2
1χ = 9.0, p = .0027).’

Note that although the process of testing χ2 involved a one-tailed test (was χ2 bigger
than a critical value?), the process of obtaining the value of χ2 was inherently two-
tailed (the way we calculate χ2 detects observed values that are bigger or smaller
than the expected value). So the α we use to obtain a critical value of χ2 is effectively
a two-tailed α. For more details on this, see Howell (1997, p. 144).

One categorical variable, more than two categories

This approach can be used for any number of categories, and any expected values.
So if a furniture warehouse stocks a vast number of chair backs, chair seats, and
chair legs, then we could take random samples of items, classify each item in the
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sample into one of these three categories (c = 3), and test the hypothesis that in the
total stock (the population) these items were in the correct chair-building ratio 1:1:4

using a 2
2χ  test (note 2 degrees of freedom = c – 1).

More than one categorical variable (contingency tests)

We’re often interested in data that’s classified by more than one variable, and in
asking whether these variables are independent of each other or in some way contin-
gent upon each other. Here’s an example (see Howell, 1997, p. 144), based on a
1983 study of jury decisions in rape cases. Decisions were classified on two vari-
ables: (1) guilty or not guilty; (2) whether the defence alleged that the victim was
somehow partially at fault for the rape. The researcher analysed 358 cases:

Obtained values Guilty verdict Not guilty verdict Total
Victim portrayed as low-fault 153 (a) 24 (b) 177
Victim portrayed as high-fault 105 (c) 76 (d) 181
Total 258 100 358

Now if these two variables (verdict and victim portrayal) are independent, then we
would expect that a/b = c/d and that a/c = b/d. But if they are not independent, we
might expect a different picture. We can use a χ2 test to answer this question. This is
called a contingency test, because it asks whether one variable is in some way con-
tingent upon the other. The null hypothesis is that the two variables are independent.
We can calculate the expected value of each cell as follows:

n

CR
columnrowE ji

ji =),(

where E(rowi, columnj) is the expected value of the cell in row i and column j, Ri is
the row total for row i, Cj is the column total for column j, and n is the overall total
number of observations.

For our example, we can calculate that E(1,1) = (177 × 258)/358 = 127.559. We can
fill in all the other expected values like this:

Expected values Guilty verdict Not guilty verdict Total
Victim portrayed as low-fault 127.559 49.441 177
Victim portrayed as high-fault 130.441 50.559 181
Total 258 100 358

Then we can calculate χ2 in the usual way:

∑
−=
E

EO 2
2 )(χ

In general, if we have a table with R rows and C columns, we have (R – 1)(C – 1)
degrees of freedom. This method extends to any R × C table.

So in our example, there are four numbers to sum over (you should obtain the an-
swer χ2 = 35.93), and we have (2–1)(2–1) = 1 df. This should make sense: once you
know the row and column totals, you need to know only one cell frequency to be

able to work out all the others. The critical value of 2
1χ  for α = 0.05 is 3.84, so we

reject the null hypothesis. When the victim was portrayed as low-fault, the defendant
was found guilty 86% of the time, but when the victim was portrayed as high-fault,
the defendant was convicted only 58% of the time, and this is a significant differ-

ence ( 2
1χ = 35.93, p < 0.001).

Assumptions of the χ2 test

All statistical tests have assumptions. If they are violated, using the test is pointless:
the results of the test will not be the probabilities we’re interested in, and therefore
our conclusions will be meaningless. This is what the χ2 test assumes:
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• Independence of observations. In all the examples given so far, each observa-
tion has been independent. One person didn’t affect another’s biscuit choice,
and one court case didn’t affect another. If this is not the case, you can’t use a χ2

test. In particular, one thing you mustn’t do is to analyse data from several sub-
jects when there are multiple observations from one subject, because they won’t
be independent. (It’s possible to analyse data from only one subject, because the
observations are then equally independent, but your conclusion will only tell
you something about that one subject.)

• Normality. There shouldn’t be any very small expected frequencies (none less
than 5), otherwise the data won’t approximate a normal distribution.
[Actually, the “none <5” rule is a bit conservative; it’s probably OK to use the
test with even smaller expected frequencies if the row totals aren't too dissimilar
and neither are the column totals (see Howell, 1997, p. 152) — but no expected
value can be zero!]

• Inclusion of non-occurrences. To see what this means, let’s take an example.
Suppose that 17 out of 20 men supported the sale of alcohol in petrol stations,
and 11 out of 20 women did. We want to know if significantly more men than
women support this idea. This would be wrong:

Obtained values Men Women
Support booze 17 11

This would give us expected values of 14 and 14 under the null hypothesis of

‘no difference’, and therefore 2
1χ  = 1.29 (not significant). But this is wrong be-

cause we’ve lost information about the total number of responders. We should
be doing this:

Obtained values Men Women
Yes to booze 17 11

No 3 9

This would give us 2
1χ  = 4.29 (p = 0.038). Including information on non-

occurrences is vital — suppose we’d interviewed 2000 men and 17 said yes:
Obtained values Men Women

Yes to booze 17 11
No 1983 9

We’d have a totally different picture, which the first table would have missed
completely.

5.2. Supplementary material: odds ratios and relative risk

Although a χ2 test may tell you that two variables are associated, it won’t tell you by
how much. One way of doing this is by using the odds ratio. Here’s some 1998 data
in which 20,000 male physicians were given daily aspirin or placebo for some time,
and the incidence of heart attacks monitored.

Heart attack No heart attack Total
Aspirin 104 (a) 10,933 (b) 11,037
Placebo 189 (c) 10,845 (d) 11,034
Total 293 21,778 22,071

The probability of someone in the aspirin group having a heart attack was a/a+b =
0.94%. The probability of someone in the placebo group having a heart attack was
c/c+d = 1.7%. The probability ratio or relative risk is therefore a/a+b ÷ c/c+d = 0.55
(or, taking the reciprocal of this, 1.82). The odds of someone in the aspirin group
having a heart attack were a/b = 0.0095 (see p. 18 for definition of odds). The odds
of someone in the placebo group having a heart attack were c/d = 0.0174. The odds
ratio is a/b ÷ c/d = ad/bc = 0.54 (and its reciprocal, bc/ad, is 1.83). So these men were
about half as likely to have a heart attack if they were on aspirin.

Probability versus odds: be careful

Applying this technique to the rape jury data above might lead you to the conclusion
that the jury were five times as likely to acquit if the defendant was portrayed as
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being at fault. The probability of conviction in the low-fault condition was 0.86,
equivalent to odds of 6.40. The probability of conviction in the high-fault condition
was 0.58, equivalent to odds of 1.38. The odds ratio is therefore 4.6 (or 0.22 de-
pending on which way round you view it). However, the probability ratio (relative
risk) is only 1.49 (or 0.67) and the absolute risk increased by 0.86 – 0.58 = 0.28.
Were the jury 4.6 times as likely to convict if the defendant was portrayed as being
at fault, or 1.5 times? This depends on what you mean by ‘as likely’! Remember that
probability = odds/(1+odds). The odds on them acquitting were increased 4.6
times; the probability was increased 1.5 times.

To get a feeling for these counter-intuitive numbers, consider a couple of examples.
Take a 100-kg sack of tomatoes that are 99% water. If you dried out the tomatoes
completely, they’d have a mass of 1 kg. What would their mass be if you dried them
out partially, until they were 98% water? The answer is 50 kg. So consider a group
of patients that has a 99% chance of dying from the disease. If you give them a drug
that reduces their probability of dying to 98% (so relative risk of dying: 0.98/0.99 =
.9899), you have halved their odds of dying from 100:1 to 50:1 (odds ratio 0.5). But
beware another property of relative risk: it matters which way round you view
things. The patients’ chance of survival has increased from 1% to 2% (relative risk
of surviving: 0.02/0.01 = 2, which is nothing like the reciprocal of the relative risk
of dying) but their odds of survival have increased from 1:100 to 1:50 (odds ratio 2,
which is exactly the reciprocal of the odds ratio of dying).

Be careful not to be misled by papers that report odds ratios. If the overall event rate
is low, odds ratios and relative risk are very similar; if high, they can be very differ-
ent. The mathematical properties of odds ratios encourage their use (you can’t dou-
ble a probability of 0.6, for example), and they can be used in studies where you do
not know the absolute probabilities (risks) of something happening (e.g. clinical
case–control studies). However, they don’t reflect our intuitive view of probability
very well. Perhaps the clearest way to report these things is to give absolute prob-
abilities, if you can, and then readers can work out all the other measures.

5.3. Supplementary material: the binomial distribution

Where does the χ2 test come from? Read on if you’re interested…

Imagine you have a coin that you flip a number of times. Each time, there are only
two possible outcomes (heads or tails). If it’s a fair coin, the probability of a head on
each trial, call it p, is 0.5. Let’s call the probability of a tail q; also 0.5. If you flip the
coin five times, what is the probability that you get five heads? There’s only one
way to do this — HHHHH. So the probability is 0.5 × 0.5 × 0.5 × 0.5 × 0.5 = (0.5)5

= p5 = 0.03125. Similarly, the probability of zero heads, i.e. five tails (TTTTT), is q5

= 0.03125 as well. But if you flip the coin five times, what’s the probability that you
get three heads? This is trickier, because there are several ways to do it. You might
throw HHHTT, or HHTTH, or TTHHH… the probability of each pattern is (0.5)5,
but we’d like an easy way to work out the number of ways of getting three heads.

Permutations and combinations

We might as well make this general. If we have n lottery balls in a lottery ball ma-
chine, and we draw out r of them in a particular order, the number of ways we could

draw them is called the number of permutations, written n
rP . For example, if there

are 50 balls in the National Lottery and we draw out 6 of them, then one permutation
is {1,2,3,4,5,6}; another is {6,5,4,3,2,1}; another is {17;42;22;5;38;9}. Since we
don’t care about the order of the balls in the lottery, we can also talk about the num-

ber of combinations of drawing r balls out of n balls, or n
rC  — combinations are

the same as permutations except that they don’t care about the order, so
{1,2,3,4,5,6} and {6,5,4,3,2,1} count as two separate permutations but are just two

ways of writing the same combination. We can calculate n
rP  and n

rC  very simply

once we know what factorial means: 6 factorial, written 6!, is 6 × 5 × 4 × 3 × 2 × 1.
So, written mathematically, here’s what we need to know:
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We can use this to find out that there are 700,890,15
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possible outcomes in the National Lottery. But we can also use it to find out that

there are 10
!2!3

!55
3 =

×
=C  ways of flipping three heads in five coin flips.

The binomial distribution

Since we know that the probability of any particular sequence of five coin flips is
(0.5)5 = 0.03125, we now know that the probability of flipping three heads is 10 ×
(0.5)5 = 0.31. In general, if we have n independent trials, each of which has two
outcomes, one of which we’ll call ‘success’ and one of which we’ll call ‘failure’,
where the probability of success is p and the probability of failure is q = 1 – p, and X
is a discrete random variable representing the number of successes, then the prob-
ability of r successes, written P(X = r), is given by the binomial distribution:

rnrn
r qpCrXP −== )(

We would call this distribution B(n, p). We can calculate the mean (the expected
value) and the variance of B(n, p):

nppnBE =)],([
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In other words, the mean number of heads in five coin flips is 5 × 0.5 = 2.5, and the
variance of this is 5 × 0.5 × 0.5 = 1.25 (so the standard deviation is √1.25 = 1.12).

Using the binomial distribution as a statistical test

If a gambler inveigles us into a betting game, flips a coin 100 times and obtains 90
heads, is the coin fair? The null hypothesis is that the coin is fair (p = q = 0.5), and
the observed number of heads was observed by chance. If the null hypothesis is true,
then the number of heads in 100 flips should obey the binomial distribution B(100,

0.5). The probability of obtaining 90 heads is therefore 1090100
90 5.05.0)90( CXP == .

But we’re actually interested in the probability of obtaining 90 or more heads. We
therefore want to know P(X ≥ 90) = P(X = 90) + P(X = 91) + P(X = 92) + … + P(X
= 100); a bit of calculation gives the answer P(X ≥ 90) = 1.53 × 10–17. This is con-
siderably less than our conventional α of 0.025 (we’d be using a two-tailed test here,
since we’d want to detect a bias in either direction, so α = 0.025 for each tail); we
would therefore reject the null hypothesis and accuse the gambler of fraud. The
clever fraudster would do better to use a very slightly biased coin: if he flipped 60
heads, then as P(X ≥ 60) = 0.028, a two-tailed test with overall α = 0.05 would not
reject the null hypothesis of a fair coin. We’d need to observe the slightly biased
coin for longer (more trials) to be able to detect its bias. This is a general principle of
statistics: more observations help you detect smaller effects.

The normal distribution as an approximation to the binomial distribution

For large sample sizes (e.g. np > 5 and nq > 5), the binomial distribution B(n, p) ap-
proximates the normal distribution N(np, npq) — that is, a normal distribution with
mean np and variance npq (see figure).

For very small p (or very large p), the binomial distribution does not approximate a
normal distribution (it approximates a Poisson distribution instead; see
www.mathworld.com/BinomialDistribution.html). Since the χ2 test assumes normal
distributions, this is why the χ2 test is not valid with very small expected frequen-
cies; see below.
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Probability (y axis) of all possible total numbers of heads observed (x axis) when you flip a coin 1, 2, 10, or 40 times
(from left to right). The binomial distribution approximates a normal distribution as n increases.

5.4. Supplementary material: the sign test

The sign test (sometimes called the Fisher sign test) evolves from the binomial test
and is very simple indeed. Using an example borrowed from Howell (1997, p. 127),
suppose we want to test whether people that know each other are more tolerant of
individual differences. We might ask a dozen male first-year students to rate the
physical attractiveness of a dozen other first-years (of the same sex) at the start and
the end of the year. Suppose the median ratings (high = attractive) are as follows:

Target 1 2 3 4 5 6 7 8 9 10 11 12
Start 12 21 10 8 14 18 25 7 16 13 20 15
End 15 22 16 14 17 16 24 8 19 14 28 18
Gain 3 1 6 6 3 –2 –1 1 3 1 8 3

The sign test looks at the sign (direction), but not the magnitude (size) of each dif-
ference. The null hypothesis is that there is no change in rating. Ignoring gains of 0
(which we don’t have here anyway), the null hypothesis would therefore predict that
by chance, about half the ratings would improve and about half would worsen, i.e.
p(higher) = p(lower) = 0.5. In our hypothetical data set, we have 10 improvements
out of 12 targets. We want to calculate P(X ≥ 10) = P(X = 10) + P(X = 11) + P(X =
12). Using the binomial distribution B(12, 0.5), we know that P(X = 10) =

21012
10 5.05.0C , and so on; the total P(X ≥ 10) is 0.0192. As this is less than our tradi-

tional α = 0.05, we would reject the null hypothesis and say that there was a signifi-
cant change in rating over the year.

The sign test using the normal approximation to the binomial distribution

For the null hypothesis, p(positive sign) = p(negative sign) = 0.5. So if the number
of non-zero difference scores n > 10, and x is the number of difference scores of one
sign (e.g. positive), we can use the normal approximation to the binomial distribu-
tion to get a quick answer. The mean of this distribution is np = n/2, and the vari-
ance is npq = n/4. So we can calculate a Z score:
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and test that Z score in the usual way (see p. 15).

Comparing the sign test to the Wilcoxon matched-pairs signed-rank test

From our discussion of the Wilcoxon matched-pairs signed-rank test (p. 67), you’ll
see that the sign test is pretty similar in overall logic — except that the sign test
throws away even more information about the distribution (it doesn’t care about the
magnitudes of the difference scores at all, just their signs). You pay a price in power,
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but gain generality; the sign test is a nonparametric test that can be used with ordinal
or even categorical data.

5.5. Supplementary material: the multinomial distribution

If we want to consider more than two alternatives for each trial, we need to use the
multinomial distribution. Let there be n trials and k alternatives for each trial,
numbered from 1 to k, each with the probabilities p1, p2, … pk. Then the probability
of obtaining exactly X1 outcomes of event1, X2 outcomes of event2, … and Xk out-
comes of eventk is given by
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An example: if we had a die with two black sides, three red sides, and one white
side, then for each trial p(black) = 2/6, p(red) = 3/6, and p(white) = 1/6. So if we roll
the die 10 times, then the probability of obtaining exactly 4 blacks, 5 reds, and 1
white is
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5.6. Supplementary material: the χ2 distribution; an outline of deriving the χ2 test; other points

The χ2 distribution

The χ2 probability density functions are shown in the figure below; you can see that
the shape of the distribution depends on the number of degrees of freedom, k. It is a
positively skewed distribution, especially when k is small. The distribution is often

written as 2
dfχ , or sometimes χ2(df). To obtain critical values of χ2, we need to know

the value of χ2 above which (say) 5% of the area falls. In practice, we’ll get this from
tables (p. 130) or a computer.

Relationship between χ2 and the normal distribution

If we have a normal random variable N(µ, σ2), we can sample one value x from it,
convert it to a standard normal variable z, and square it:

2

2
2 )(

σ
µ−= x

z

The χ2 distribution, shown with 1, 2, 4, and 8 degrees of freedom. You can see that the distribution is positively skewed,
but that as the number of degrees of freedom increases, it becomes more like a normal distribution.
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If we repeated this ad infinitum, sampling independently each time, we would have a
great number of values of z2. We could therefore plot the distribution of z2. We

would find that this distribution is the same as 2
1χ  (χ2 with 1 df):

22
1 z=χ

Now suppose that instead of sampling one number at a time, we sample n numbers
at a time. For each observation within each sample we calculate z2; for each sample,
we calculate Σz2. So each sample produces one value of Σz2. Now we plot the distri-

bution of these values of Σz2. We find that the distribution is the same as 2
nχ :
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In other words, then if Y is the sum of squares of n independent standard normal

variables, then Y is distributed as χ2 with n degrees of freedom. (Since 2
iz has a χ2

distribution, this result also shows that the sum of a set of independent values of χ2

itself has a χ2 distribution, given the restrictions of independent sampling and an un-
derlying population with a normal distribution.)

χ2 tells us something about the distribution of sample variances

If we have a normal random variable N(µ, σ2), we can draw an infinite number of
samples from it. From each sample, we can calculate the sample variance s2. We
could then plot the distribution of these sample variances. We would find that it is
related to the χ2 distribution:
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Since σ2/(n–1) is constant for a given σ2 and sample size (n), the sampling distribu-

tion of the variance (the distribution of a set of sample variances) has a 2
1−nχ  distri-

bution. Since the χ2 distribution is skewed, this tells us that the distribution of s2 is
too — although the average value of a lot of s2 measurements will equal σ2, more
than half the time s2 will be less than σ2.

Remember, it is because the distribution of s2 is skewed (because it has a χ2 distri-
bution) that we use the t test rather than the Z test when we use s2 as an estimator of
σ2 (p. 58). Of course, the bigger the sample, the more df the χ2 distribution has, so
the less skewed it becomes, and the more it and the resulting t distribution become
like the normal distribution.

Deriving the χ2 test from the binomial distribution (via the normal distribution)

Suppose we ask 100 people to choose between chocolate and garibaldi biscuits.
Let’s say that 65 choose chocolate and 35 choose garibaldi. Does this differ from
chance, i.e. a 50:50 split? We could answer this with the binomial distribution,
B(100, 0.5), but there’d be a lot of adding up to find P(X ≥ 65). So let’s do it a dif-
ferent way. For large sample sizes (e.g. np > 5 and nq > 5), the binomial distribu-
tion B(n, p) approximates the normal distribution N(np, npq). We’ve seen that
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where x is sampled from a normal distribution N(µ, σ2). As we know the mean of a
binomial distribution is np and the variance (σ2) is npq, we can derive this approxi-
mation:
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To make things easier for later, we’ll call the observed frequencies O1 and O2, and
the expected frequencies E1 and E2. Specifically, E1 = np and E2 = nq, and O1 + O2

= E1 + E2 = n. In our biscuit example, O1 = 65, O2 = 35, E1 = 50, and E2 = 50. Ex-
panding and substituting these in to the previous formula, we would eventually get
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which is the general formula for χ2 that we’ve been using. This formula also extends
to more than two categories, using the multinomial distribution.

5.7. Supplementary material: other points about χ2

 ‘Too good a fit’ — the other tail of the χχχχ2 distribution

Very advanced stuff, this. But if you look at the χ2 distribution (especially for higher
df), you’ll see that it’s also possible to have an unusually low χ2. Obviously, χ2 can
never be negative, but it can be lower than you’d expect by chance — in the far left
tail of the distribution (whereas conventional χ2 testing always asks whether χ2 is
greater — further right — than a critical value). What does it mean to say that χ2 is
unusually close to zero? That there is too good a fit to a proposed model. For exam-
ple, if we flip a coin 10,000 times, then if the coin is unbiased it would be unlikely

that we get 5100 heads and 4900 tails ( 42
1 =χ , p < 0.05). But if the coin is unbiased

it is also quite unlikely that we get exactly 5000 heads and 5000 tails.

A famous example of this sort of criticism was Fisher’s (1936) analysis of Gregor
Mendel’s (1866) experiments on plant breeding that established the field of genetics.
Fisher argued that Mendel’s data were ‘too good a fit’ to his model; for example,
one study predicted a 3:1 ratio of plants with yellow and green seeds and obtained a

ratio of 6022:2001 ( 015.02
1 =χ , p = 0.903). This is a pretty good fit, but nothing

improbably good. However, Fisher looked at several such examples, and totalled up
their χ2 values. (This is perfectly valid mathematically; remember, we saw above
that the sum of a set of independent χ2 variables itself has a χ2 distribution. The ex-

pected value [mean] of 2
1χ  is 1; the expected value of 2

nχ  is n.) Fisher obtained a

cumulative 61.412
84 =χ , p = 0.99997 — far smaller than the expected χ2 value of

84. Now if the probability of obtaining data that deviate from Mendel’s model by
this much or more, given that the model is correct, is p = 0.99993, then the probabil-
ity of obtaining data that deviate from the model by this much or less, given that the
model is correct, is approximately 1 – p = 0.00003. Therefore, the data were actually
unlikely (given that Mendel’s model was true and that plants were randomly sam-
pled) because they were too good a fit to that model. Fisher argued on this basis that
Mendel or his assistant falsified or biased experiments so as to agree with Mendel’s
expectations — though perhaps only because he stopped when he was satisfied that
his theory had been demonstrated (see Abelson, 1995, p. 96). There has been some
vigorous and often fallacious debate on the validity of this approach (Pilgrim, 1984;
Edwards, 1986; Pilgrim, 1986a; Pilgrim, 1986b) but Fisher’s methods were sound
(Edwards, 1986). But in any case, Mendel’s experimental hypothesis was correct!

Note that there are other reasons that statistics can come out ‘too small’, such as
when the assumptions of the test are not met (see Abelson, 1995, pp. 93-97). For ex-
ample, it would be possible to obtain a ‘too-good-to-be-true’ situation in a χ2 test if
the observations were not independent.

What’s Yates’ correction to χ2?

Something we won’t use. In full, Yates’ correction for continuity is a procedure ap-
plied for the analysis of 2 × 2 contingency tables (only) using the χ2 test. It is in-
tended to correct for the fact that the theoretical χ2 distribution is continuous, but the
χ2 statistic can only take certain values in real situations (is discontinuous). To use
the correction, subtract 0.5 from the absolute value of (O – E) before squaring it.
That is, the correction applies the formula
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For example, for a category where O = 6 and E = 4, or where O = 4 and E = 6, you
would add 1.52/4 to your χ2. It is popularly applied when the expected values are
small (typically, less than 5). However, Howell (1997, p. 146, q.v.) argues that
there’s almost never a good reason to use it — there are specific reasons when it’s a
good thing, but they are rare situations. We will ignore it.

Chi-square, or chi squared?

Note that χ2 is usually written in full as ‘chi-square’, not ‘chi squared’, on the basis
that it is a single statistical variable, not the square of some quantity χ (e.g. Howell,
1997 and see physics.ucsc.edu/~drip/133/ch4.pdf) — but other mathematicians
disagree (see www.mathworld.com/Chi-SquaredDistribution.html and its links).

Relevant functions in Excel (see Excel help for full details)

BINOMDIST() Gives you the binomial p.d.f., P(X = x), or c.d.f., P(X ≤ x), where X has a binomial distribution.
CHIDIST() From χ2 and the df, gives you the probability that P(X > χ2), where X has a χ2 distribution.
CHIINV() From p and the df, gives you the critical value of χ2 such that P(X > χ2) = p.
CHITEST() Does a χ2 test for you, working out the df automatically and returning the p value. But it’s often

difficult to be sure that what it’s doing is what you hope it’s doing, so it’s much safer to com-
pute χ2 step by step and then use CHIDIST() to get the p value.
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5.8. Examples 5: χ2

Q1. A coin is tossed 100 times. It comes down heads 40 times, tails 60 times. Is it
biased?

Q2. 100 male rats and 100 female rats are tested on an up/down jumping stand. 40
of the males jump up, and 60 down. Only 16 female jump up, and 84 down. Is this
good evidence that females jump down more than males?

Q3. In January 2007 there will be 7,000 road accidents in Cambridge. 1,643 of them
will happen on Sundays. Will this be good evidence that accidents tend to happen on
Sundays more than on other days?

Q4. A die is rolled 342 times. The various sides appear with the following frequen-
cies. Is it biased?

1 2 3 4 5 6
53 48 75 49 60 57

Q5. Samples from three strains of giraffe, with 80 giraffes in each sample, were di-
vided into four groups on the basis of ophthalmoscopic measurements of their re-
fractive errors. The numbers in each group are shown below. Is there any evidence
that the strains differ in the relative frequencies of different refractive errors (in-
cluding Normal)?

Short-sighted Long-sighted Astigmatic Normal
Strain A 5 7 23 45
Strain B 13 17 30 20
Strain C 10 5 15 50
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6. Past exam questions

About the NST 1B Psychology exam

‘Section B contains a single question. In Paper 1, this question requires a statistical
analysis of a set of data; in Paper 2, the design of an experiment or series of ex-
periments is required… Section B [is] assigned 25% of the total maximum marks for
a paper.’

Q1 (2000, Paper 1).

In a treatment trial for depression all patients received treatment with imipramine, an
antidepressant drug. In addition, half received cognitive therapy (Cogth) while half
received counselling (Couns). Patients were assessed on the Beck Depression In-
ventory prior to (Pre) and following (Post) the treatment programme. The results are
shown overleaf.

a) Which treatment is more effective?
b) Are there any differences between the levels of depression in men and

women prior to treatment?
c) Is there a relationship between depression before and after treatment in the

cognitive therapy group?

Treatment Gender Pre Post
Cogth F 20 10
Cogth F 18 11
Cogth F 17 6
Cogth F 19 10
Cogth F 21 8
Cogth M 42 20
Cogth M 35 17
Cogth M 32 18
Cogth F 15 3
Cogth M 28 18
Cogth F 22 11
Cogth F 21 7
Cogth M 26 17
Cogth F 27 14
Cogth F 19 8
Couns F 19 14
Couns F 17 13
Couns F 18 19
Couns F 20 14
Couns F 23 19
Couns M 38 30
Couns M 33 29
Couns M 34 27
Couns F 13 10
Couns M 29 20
Couns M 23 16
Couns F 24 16
Couns F 28 25
Couns F 24 16
Couns F 17 13
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Q2 (2000, Paper 2).

Answer one of the following three questions on Experimental Design.

(1) Design a research project to investigate the relative importance of different
depth cues in determining size constancy.

(2) It has been shown that babies of 8 to 9 months can show “conditioned joint
attention”. The experimenter and baby face one another and then the ex-
perimenter turns his/her head to look at a movable toy either to the left or
the right of the baby. If the baby turns and looks in the same direction, the
toy is activated, thus acting as a reinforcer. Design an experiment to assess
the kind of learning that underpins this behaviour.

(3) A pharmaceutical company has developed a new drug for alleviating anxi-
ety. However, they are concerned that this drug may also have effects on
working memory, and therefore they wish to assess the effects of the drug
on this form of memory using an animal model before conducting trials with
human volunteers. Design an experiment to assess this question using rats as
subjects.

Q3 (2001, Paper 1).

In an incidental memory experiment, 10 subjects were presented with a series of
preference judgement trials. On each trial, the subjects were asked to rate a picture
for attractiveness. In two subsequent tasks, the subjects were tested first for their re-
call, and then for their recognition, of the fifty pictures used in the preference task.
The number of pictures correctly recalled and recognised by each subject is given
below:

Subject Recalled Recognised
1 19 12
2 27 38
3 24 34
4 40 47
5 29 39
6 50 50
7 17 17
8 25 43
9 30 31

10 38 35

Determine whether recognition performance is better than recall performance using
an appropriate statistical test.

Construct a scatter plot of the number of pictures recognised against the number re-
called. Did those subjects who recalled more pictures also recognise more of them?

Plot on your graph the line that best predicts recognition performance from recall
performance.

Q4 (2001, Paper 2).

Answer one of the following three questions on Experimental Design.

(1) Subjects are able to adapt to the displacement of the visual field produced by
a prism worn over one eye. Design a series of experiments to demonstrate
this effect and to investigate what subjects learn during adaptation.
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(2) Some words in English also happen to be words in another language. For
example, the word “gift” means poison in German, whereas the word “four”
means oven in French. Design an experiment to investigate:

(a) whether bilingual speakers automatically access meaning in both lan-
guages when they read a word like “gift”, and

(b) whether it makes a difference if the words in the two languages have the
same phonology as well as the same spelling.

(Note: You do not need to display any knowledge of a second language or
use real words as examples.)

(3) Design an experiment to determine whether a therapy that is aimed at re-
ducing expressed emotion in the families of individuals with schizophrenia
has an effect on relapse rate.

Q5 (2002, Paper 1).

The results below were obtained in a recent practical class on mental rotation. The
subject was asked to indicate as quickly as possible whether a letter was presented in
its normal form or as a mirror-image. The letter was presented in different orienta-
tions on different trials. The first row of the table shows the number of degrees by
which the letter was rotated from the upright position. The second row shows the
corresponding mean reaction time for those trials in which the target was presented
in its normal form. The final row shows the average error rate for each orientation.

Rotation (deg) 0 45 90 135 180 225 270 315
RT (msecs) 518 563 638 781 896 738 625 552
Error rate (%) 0.87 0.84 1.47 2.44 4.20 2.29 1.33 0.53

A standard theory holds that the subject performs a ‘mental rotation’ of the target
before judging whether it is in its normal form. The transformation is thought to be
carried out over the most direct route. On the assumption that this theory is correct,
estimate the rate of ‘mental rotation’ from the data. What is your best estimate of the
time occupied by the remaining components of the reaction time?

Is there a significant relationship between reaction time and error rate?

Q6 (2002, Paper 2).

Answer one of the following three questions on Experimental Design. Say what data
you would collect and what statistical procedure(s) you would use.

a) Young infants from about 12 months have been observed to look at their care-
giver before they approach or reach out for an unfamiliar object. If their care-
giver looks anxious, the infant will withdraw from the unfamiliar object, but
they will approach if their caregiver looks happy. This phenomenon is called
‘social referencing’. Some have argued it reflects the infant’s new capacity to
understand that their caregiver has mental states, which the infant infers from
the adult’s facial expression. Design an experiment to assess this claim against
alternative explanations for ‘social referencing’.

b) Design an experiment to determine whether the left or the right ear is more ac-
curate in recognising words presented, one to each ear, simultaneously. What
particular problems does such an experiment encounter?

c) Suppose you are interested in determining the mechanisms that are responsible
for retroactive and proactive interference. Design an experiment that might help
elucidate these mechanisms.
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Q7 (2003, Paper 1).

In an initial experiment to measure the reaction times for discriminating ‘positive af-
fect’ faces (expressing ‘happiness’) from ‘negative affect’ faces (expressing ‘sad-
ness’) the following ten reaction times from ten subjects were recorded in millisec-
onds (msec):

630 580 604 596 720 549 613 660 578 618

Within what interval is there a 95% probability that the true population mean lies
(assuming that the 10 observations have been sampled randomly from a normally
distributed population)?

In a subsequent experiment, 12 subjects were randomly assigned to two groups. One
group was given a caffeine tablet (condition A) while the other group was given a
placebo — a ‘sugar pill’ with no physiological effect (condition B). Reaction times
were then taken for subjects in both groups on the ‘positive affect’ versus ‘negative
affect’ face discrimination test. These are given below.

Reaction time score (msec)
Condition A: 643 497 567 521 596 507
Condition B: 586 601 547 630 654 593

Is there a significant difference between the two groups?

Q8 (2003, Paper 2).

Answer one of the following three questions on Experimental Design. State what
data you would collect and what statistical procedure(s) you would use, and give the
reasons for your choices.

(1) Design an experiment to demonstrate blocking in humans. Indicate how you
would investigate the processes responsible for the effect in further experi-
ments.

(2) It has been claimed that aspirin adversely affects the operation of the active
mechanism in the cochlea. Design an experiment to test this claim.

(3) Design an experiment to investigate whether people who are blind perform a
mental imagery task. Be sure to choose a task that requires visual mental
imagery and cannot be performed using semantic knowledge.

Q9 (2004, Paper 1).

An experimenter is interested in schizotypy, a personality type thought to predispose
to the development of schizophrenia. One aspect of schizotypy is ‘magical ideation’,
the tendency of a person to believe in magical phenomena. Schizophrenia has been
suggested to involve abnormal development of the left/right asymmetry of the cere-
bral hemispheres, and abnormalities of the dopaminergic neurotransmitter system.
High dopamine levels in one side of the brain are known to make animals turn to the
opposite side, and consequently, the experimenter wonders if people with magical
ideation might have higher dopamine levels in the right-hand side of their brain,
which might result in a tendency to turn left more often than would be expected by
chance.

She selects a group of 16 subjects at random and measures their Magical Ideation
scores using standard techniques. She then equips her subjects with devices to
measure their turning behaviour. She gives each subject one of either dopamine
agonist (increases levels of dopamine [actually, mimics dopamine!]) or placebo (in a
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randomised double-blind design), records the number of left and right whole-body
turns they make in their everyday activities over a certain time period, and then cal-
culates the percentage of left turns made. Her data are shown below.

Subject Magical Ideation score Dopamine agonist or placebo Percentage of turns made to the left
1 8.1 Placebo 44.7
2 5.2 Placebo 41.6
3 9.7 Placebo 49.6
4 12.8 Placebo 55.3
5 12.6 Placebo 50.9
6 14.2 Placebo 60.8
7 2.4 Placebo 41.7
8 8.3 Placebo 51.4

9 12.3 Dopamine agonist 61.9
10 5.7 Dopamine agonist 57.2
11 6.9 Dopamine agonist 63.2
12 3.9 Dopamine agonist 53.1
13 3.5 Dopamine agonist 52.3
14 6.1 Dopamine agonist 47.3
15 6.7 Dopamine agonist 54.2
16 2.6 Dopamine agonist 48.3

Assume that the percentage of turns made to the left by humans is a normally-
distributed variable.

a) Considering only those subjects who received the placebo, sketch a scatter-
plot showing the relationship between magical ideation scores and percent-
age of left turns. Is there a significant linear relationship between magical
ideation and left-turning behaviour in these subjects? What proportion of the
variability in left-turning is predictable from the magical ideation scores in
these subjects?

b) Did the dopamine agonist affect turning behaviour when compared to pla-
cebo?

Q10 (2004, Paper 2).

Answer one of the following three questions on Experimental Design. State what
data you would collect and what statistical procedure(s) you would use, and give the
reasons for your choices.

a) Design an experiment to demonstrate that unseen visual stimuli can affect
behaviour.

b) It has been claimed that moderate intake of alcohol enhances subjects’ abil-
ity to solve anagrams. Design an experiment to test this claim.

c) Design an experiment to investigate whether young children are able to re-
hearse items in memory.
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7. Further mixed examples

Q1. The popliteal height (distance from underside of thigh to sole of foot when
seated) of adult males is normally distributed with a mean of 17.0” and a standard
deviation of 0.8”. What percentage of men will be unable to rest their feet on the
floor when sitting on a chair whose seat is 15” from the ground? Assume they wear
no shoes or socks.

Q2. An experimenter has reason to believe that subjects’ reports of the difference
between the lengths of the lines in a Müller–Lyer illusion will be affected by the
presence of a stooge who gives a pre-arranged false report. 30 subjects were each
presented with the illusion and had to judge, orally, the apparent difference in length
of the two lines, in inches. The experimental group were each accompanied by a
stooge partner, whereas the control group worked on their own. Each subject’s
judgement is given below. Is there a significant difference (at the 5% level) between
the two groups?

Experimental –0.41 0.95 0.82 0.44 –0.64 0.76 –0.12 0.41 0.34 0.43 0.08
–0.57 –0.06 –0.05 0.09

Control 0.22 –0.17 –0.11 0.19 0.32 0.97 –0.17 –0.79 –0.11 0.05 –0.49
0.23 0.22 –0.45 –0.28

Q3. Suppose that on a final exam in statistics the mean score was 50 and the stan-
dard deviation (σ) was 10. Find the following:

(a) The standardized (Z) scores of students receiving the following grades: 50,
25, 0, 100, 64

(b) The raw grades corresponding to Z scores of –2, 2, 1.95, –2.58, 1.65, –0.33.

The instructor had reason to believe that the scores were normally distributed. Our
of 200 students, how many should he have expected to achieve scores:

(c) within 1 × σ of the mean?
(d) 3σ or more above the mean?
(e) between –1.96σ and –0.5σ away from the mean?

Q4. In an experiment to see whether position preferences are heritable in mice, two
strains of mice were bred, one selected for left-turning behaviour and the other for
right-turning. After ten generations, members of each strain and selected controls are
observed in a maze. Their first turns are as follows. Does the experiment demon-
strated inherited position preference?

Right Left Total
Bred for R turn 17 9 26
Bred for L turn 13 15 28
Unselected 18 12 30

Q5. After the TV appeal on behalf of the Ski Slopes for the Disabled Fund, cheques
were received for the following amounts (in £), and in the order given. Is there a re-
lation between the size of the gift and the promptness with which it was sent off?

1000 120 5 15 10 6.30 10 25 2.50 2 4 0.12 1 1 8

Q6. Suppose that the lecturer in your History of Babylonia course informs you that
on the final examination two students received grades of 60 and 30, and that the
standardized scores corresponding to those grades were 1 and –1 respectively.
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(a) What are the mean and standard deviation of the scores?
(b) If the scores are normally distributed, what proportion of them should lie

between 25 and 65?
(c) On the same assumption, between what two scores should the middle 50%

of cases lie?

Q7. In a study of reaction time (RT) to an auditory as opposed to a visual stimulus,
20 pairs of Basic Airmen were selected at random. Each pair was matched in physi-
cal stature, age, intelligence, and so forth. The members of the pairs were then as-
signed at random to two experimental conditions. In one, the man was to touch a
button as soon as possible after the appearance of a visual stimulus. The other con-
dition was the same except that the stimulus was a buzzer. The average RTs are
shown below, in ms. Is there a significant (at 5%) difference in RT to the different
types of stimuli?

Pair 1 2 3 4 5 6 7 8 9 10
Auditory RT 130 200 150 140 230 160 180 150 200 170
Visual RT 160 130 120 150 120 160 110 210 170 140

Pair 11 12 13 14 15 16 17 18 19 20
Auditory RT 220 140 220 230 180 190 180 210 230 220
Visual RT 170 160 110 290 100 190 210 180 170 160

Q8. A subject has to set the two sides of a rectangle to be visually equal on a num-
ber of trials. The table gives the time taken for each adjustment (in sec) and the error
(in mm). Is there any relation between the time taken in adjustment and size of er-
ror?

Trial 1 2 3 4 5 6 7 8 9 10 11 12
Time 17 8 11 24 9 15 20 12 35 9 14 17
Error 4.4 5.7 4.0 4.2 3.6 1.9 2.9 5.3 4.1 6.3 0.8 2.0

Q9. The following are the wavelenghts (in nm) for maximum visual sensitivity of
fiteen colour-normal observers and eight deuteranopes (colour-blind individuals
lacking the ‘green’ pigment). Do these data show any difference between the two
groups?

Colour-normals 560 558 563 561 552 557 562 560 569 559
564 554 559 560 556

Deuteranopes 561 567 559 570 564 555 566 561

Q10. IQ is defined to be normally distributed with mean 100 and standard deviation
15. What IQ is high enough for only 100,000 people in England and Wales (take
population to be 50,000,000) to exceed it? How many people lie between 95 and
105? Between 60 and 70?

Q11. A psychologist was interested in the verb–adjective ratio as an index of indi-
vidual speech habits. 10 science and 12 arts students were chosen at random, and a
sample of free speech of each subject obtained. Each sample was scored according
to the number of verbs used divided by the number of adjectives. The data are
shown below. Do science students have a significantly higher verb–adjective ratio?

Sci 1.32 2.30 1.98 0.59 1.02 1.88 0.92 1.39 1.95 1.25
Arts 1.04 0.93 0.75 0.33 1.62 0.76 0.97 1.21 0.80 1.16 0.71 0.96
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Q12. Four large US midwestern universities were compared with respect to the
fields in which graduate degrees were given. The graduation rolls for last year from
each university were taken and the results put into the contingency table below. Is
there a significant association (at the 5% level) between the university and the fields
in which it awards degrees? What are we assuming when we carry out this test?

University Law Medicine Sciences Humanities Other
A 29 43 81 87 73
B 31 59 128 100 87
C 35 51 167 112 252
D 30 49 152 98 215

Q13. In the Tripos examination for Part II Neurobotany, male (M) and female (F)
candidates are placed in the order shown below (highest marks first). Do either men
or women make better neurobotanists, insofar as this elusive quality is measured by
the examination?

M M F M M M F F M F M F F M M M M M F M

Q14. A number of 30-second samples were taken from each of three TV channels,
and classified according to whether the subject matter was primarily sex, violence,
or general interest. The table below shows how many were in each category. Do
these data show a significant difference in the contents of the three channels?

Sex Violence General interest Total
BBC1 26 17 57 100
BBC2 17 5 38 60
ITV 19 33 48 100

Q15. On each trial of a discrimination experiment, a monkey was watched for neck-
scratching and tooth-baring behaviour. These occurred on the numbers of trials
shown below. Do these data show any connection between neck-scratching and
tooth-baring?

Neck-scratching alone 46
Tooth-baring alone 22
Neck-scratching and tooth-baring 5
Neither 53

Q16. In a study of demographic trends, 26 newly-married couples were asked, one
individual at a time, how many children they would like to have. Responses are
listed below. What can be concluded from these data? (Note that at least four differ-
ent tests can be applied. To what question is each appropriate?)

Couple 1 2 3 4 5 6 7 8 9 10 11 12 13
Husband 3 0 1 2 0 0 1 2 2 1 8 0 3
Wife 2 1 0 2 3 3 2 3 3 2 4 1 4

Couple 14 15 16 17 18 19 20 21 22 23 24 25 26
Husband 5 7 1 0 4 10 5 2 0 1 3 5 2
Wife 2 2 2 3 4 3 3 4 2 3 2 2 1

Q17. Ten subjects were tested on a high-speed sorting task while subjected to 100
dB SPL white noise through earphones. On session 1 and 4 the test was preceded by
a period of 115 dB SPL noise and on sessions 2 and 3 by 85 dB SPL noise. Their er-
ror scores are shown below. Does the intensity of the preceding noise have a signifi-
cant effect on task performance?
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Subject 1 2 3 4 5 6 7 8 9 10
Errors in 2 & 3 37 29 60 44 21 47 46 38 28 66
Errors in 1 & 4 24 24 31 30 26 42 33 19 32 45

Q18. The following are percentages of a group of 15 subjects on (a) a motor-
tracking test and (b) the Body Image Awareness scale. Is there any relationship be-
tween the two scores?

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tracking 74 31 80 66 41 53 77 39 46 19 55 62 38 49 59
BIAS 43 60 51 53 57 70 39 85 68 73 54 48 59 39 87

Q19. A die is thrown 300 times, each face appearing uppermost on the number of
times shown below. Would you accuse the owner of having a loaded die?

Face 1 2 3 4 5 6
No. of throws 42 37 58 44 61 58

Q20. Fifteen sea slugs are placed on a line perpendicular to a gradient of light inten-
sity. After two minutes their distances from the line are as shown below (cm; +ve
distances are towards the light). Do the slugs show a significant tendency to be
phototropic?

+13 +21 +5 –1 +3 –7 +12 +9 +24 –19 +21 +11 +48 –8 +15

Q21. In an experiment on the effects of context on letter perception in reading, a
subject has to cross out every letter ‘e’ she spots in a page of the Times, working as
fast as possible. For es in contexts where they have the sounds as in ‘evil’, ‘belt’,
and unstressed ‘the’, she misses 17 out of 243, 64 out of 409, and 99 out of 688, re-
spectively. For silent es she misses 108 out of 595. Are there significant differences
in the proportions missed in the four different pronunciations?

Q22. In a sample of 1000 people in a mass eye-testing program, the numbers need-
ing various powers of corrective lenses are as follows (power in dioptres, for right
eye only). Do these powers deviate significantly from a normal distribution? This
question is well beyond the standard required for the exam!

–5D –4D –3D –2D –1D 0 +1D +2D +3D +4D +5D
11 29 41 67 106 532 133 40 22 14 5
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8. Answers to examples

Answers calculated by RNC — caveat emptor. Thanks to MRFA for checking them.

In some of these examples I’ll quote exact p values, rather than just saying ‘p < 0.05’. Don’t worry about this — since
you’re operating from tables and I’m doing some of these questions on a computer to save time, I can quote exact p
values when you can’t. If I say ‘p = .03’, your tables would show that p < .05, but not that p < .01. If I say ‘p = .125’,
your tables would show that the answer is not significant at p = .1 (i.e. p > .1)… and so on.

8.1. Answers to Examples 1: background and normal distribution

Q1 RV (a) 0.933; (b) 0.015; (c) 0.015; (d) 0.136; (e) 0.046

Explanations…
If X is a normally-distributed random variable with mean 23.5 and SD 3.0, then we can invent a variable
Z that has a mean of 0 and a SD of 1 — a ‘standard’ normal variable’ by calculating Z = (X – mean)/SD
= (X – 23.5)/3.0.

So when we want to ask ‘what’s the probability that X is less than 28’, we can ask instead ‘what’s the
probability that Z is less than (28 – 23.5)/3.0 = 1.5’. We can look up the probability of Z being less than
1.5 from tables of Z (see p. 123); it’s 0.933. So this is also the probability that X < 28.

If you want to find the probability that X > 30, that’s equivalent to asking ‘what’s the probability that Z >
(30 – 23.5)/3.0 = 2.167’. From tables, the probability that Z is less than 2.167 is 0.985, so the probability
that Z is bigger than 2.167 (or X is bigger than 30) is 1 – 0.985 = 0.015.

This logic applies to all these examples. When you want to find the probability that 26 < X < 28, find the
probability that X < 28, and take away from it the probability that X < 26.

Q2 IQ (Since you’re multiplying probabilities by a large number — 60,000,000 — you will notice differences
between the answers you’d get from your tables and those you’d get with a computer. I’d expect you to
use the tables — you’ll have to in the exam — but have quoted both answers here.)

(a) 78,000. The probability P(IQ > 145) is the same as the probability P(Z > 3), which is 0.0013 from
your tables. So this corresponds to 0.0013 × 60,000,000 = 78,000 people. (If you calculate this more
precisely with a computer, you get a probability of 0.001349967… and the answer 80,988.)

(b) P(Z < –1.33) = 0.0918, so the answer’s 5,508,000 (or, with a computer, 5,472,677).
(c) P(–1 < Z < 1) = 0.6826, so the answer’s 40,956,000 (or, with a computer, 40,961,369).

Q3 meerk (a) SD = 2 cm; (b) P(0 < Z < 0.5) = 0.192; (c) 227; (d) 26.08 to 33.92 cm; (e) 0.067; (f) 0.933; (g) zero.

To explain (g) a little… the probability of finding a meerkat whose height is the same as a particular
value depends on what we mean by ‘the same as’! As we become more and more restrictive (the meerkat
has to be within a centimetre… millimetre… micron… of the specified height) the probability of finding
such a meerkat becomes smaller and smaller. As the range of acceptable heights shrinks to zero, so does
the probability, so the probability of finding a meerkat of ‘exactly’ a given height is zero.

Q4 RCBF (a) 0.0082; (b) 0.0164; (c) 38 ml/min; (d) 0.809.

Explanation of (d): a Z score of ±2.4 is equivalent to p = 0.0164, so P(make at least one Type I error at p
= 0.0164) = 1 – P(never make any Type I errors at p = 0.0164 in 100 comparisons) = 1 – (1–0.0164)100 =
1 – 0.191 = 0.809.

Caveat: the method for finding (d) doesn’t take into account the fact that nearby areas are likely to have
related blood flows — but then this is a statistics example, not an functional imaging tutorial.

Q5 poem Depends on the food, accommodation and risk aversion; both P(lose money) = 0.18. (From Frank & Alt-
hoen, 1994.)



8: Answers to examples 95

8.2. Answers to Examples 2: correlation and regression

Q1 visual decay

sample covariance = 9.789
sX = 3.373
sY = 3.558

r = .816, p = .001 two-tailed, n = 12
regression Y = 21.24 + 0.86 X

Full working for Q1:
X Data

0 2 4 6 8 10 12

Y
 D
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a

20
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26

28

30

32

34

Call blink rate X and decay time Y. Plot your scatterplot as above. There’s no obvious non-linear relation-
ship, so doing a linear correlation makes sense. Data points, written as {x,y} pairs, are {2.1, 24.5}, {10.3,
29.8}, {5.9, 27.9}, {10, 32.9}, {0.5, 23}, {4.5, 21}, {3.1, 23.2}, {8.2, 25.3}, {5.2, 24.7}, {9.7, 30.7},
{4.6, 26.5}, {9.7, 28.9}. You should be able to enter these into your calculator and get r directly. If
you were to do it by hand, you’d calculate these:

84.2065)9.287.9()8.293.10()5.241.2( =×++×+×=∑ …xy

8.737.93.101.2 =+++=∑ …x

04.5797.93.101.2 2222 =+++=∑ …x

4.3189.288.295.24 =+++=∑ …y

48.85879.288.295.24 2222 =+++=∑ …y

12=n
OK… now for the sample covariance and sample standard deviations. Using the formula sheet:
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Now we can calculate r (and r2):

816.0
558.3373.3
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666.02 =r
… and a t statistic:

464.4
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With 10 df, t = 4.464 is significant at the α = 0.01 two-tailed level (i.e. p < .01 two-tailed). (A computer
would tell you that p = .001.) Next, to calculate the regression of Y on X (predicting Y from X), we aim
to calculate the equation

bXaY +=ˆ

Your calculator should be able to give you a and b directly (and you’ve already entered the data to
calculate r, so you should be able to retrieve a and b very quickly). But if you had to calculate them by
hand, you’d do it like this… First, we need the means of x and y:

15.6
12

7.93.101.2 =+++=∑= …
n

x
x

533.26
12

9.289.278.29 =+++=∑= …
n

y
y
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Now we have all the information to calculate a and b:

86.0
373.3

558.3
816.0

cov
2

=×===
X

Y

X

XY

s

s
r

s
b

24.2115.686.0533.26 =×−=−= xbya

So our regression equation, which you can add to your scatterplot, is
XbXaY 86.024.21 +=+=

You can plot it by taking two or more x values that are reasonably far apart and calculating predicted val-
ues of Y, giving you {x, ŷ } pairs. You should also find that the line passes through {0, a}, and { x , y },

i.e. through {0, 21.24} and {6.15, 26.533}.

(This calculation — not hard, but time-consuming — should emphasize the importance of having a cal-
culator that does the hard work for you in the exam!)

Q2 Necker

r = .711, p = .003 two-tailed, n = 15
regression Y = 97.431 + 2.66 X

X Data
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Q3 frog RGC

r = –.738, p = .015 two-tailed, n = 10
regression Y = 9.825 – 0.0522 X

X Data
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Q4 Vatican / ice cream

Correlate location rank with price rank (calling the result
Spearman’s correlation coefficient rs):

Location rank: 1, 2,    3,   4, 5, 6,    7,    8, 9, 10
Price rank:       9, 7.5, 10, 5, 5, 7.5, 2.5, 1, 5, 2.5

This gives you rs = –.778. Since n = 10, p = .008 two-tailed
(as calculated by the program SPSS). However, different
calculation techniques will give slightly different answers
for p; for rs = –.778 and n = 10 your tables (see p. 124) will
show you that .01 < p < .02, two-tailed.
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Q5 impulsivity, CSF 5HIAA

r = –.054, p = .883 two-tailed, n = 10
(regression Y = 30.57 – .0155 X — you’ll often see pub-
lished figures in which ‘non-significant’ regression lines are
plotted, mainly so you can see the line is flat and useless as a
predictor.)
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8.3. Answers to Examples 3: parametric difference tests

Q1 glare This question is asking for the 90% confidence intervals. From the formula sheet, we see that we don’t
know the population mean and SD, but we can work out the sample mean and SD, so we use this formula:

Confidence intervals = dfncritical
X t
n

s
x )1( −±

(For 95% confidence intervals, use t for α = 0.05 two-tailed.)

We want the 90% confidence intervals, though, so we use t for α = 0.1 two-tailed. Working as follows:
• sample mean 015.5=x
• sample standard deviation (SD) = sX = 0.711 (see Examples 2 for a worked example of calculating

this by hand, but your calculator should give it to you directly)
• n = 10

• standard error of the mean 225.0
10

711.0 ===
n

s
s X

x

• number of degrees of freedom df = n – 1 = 9
• with 9 df, critical values of t for 5% each tail = ±1.833 (if there’s 5% in each tail, then 90% of values

of t lie within ±1.833 of the mean). This value is listed in the Tables and Formulae sheet as the criti-
cal value of t for a two-tailed α of 0.1, or a one-tailed α of 0.05. All these are different ways of saying
the same thing!

• the 90% confidence intervals are therefore 5.015 ± (1.833 × 0.225) = 5.015 ± 0.4124 = 4.6026 and
5.4274

So there’s a 90% chance the true mean lies between 4.6026 and 5.4274.
(Do your working with maximum accuracy to avoid rounding errors, but when you’ve finished it’s proba-
bly best to express the final answer to 3 significant figures — so we’d state that the 90% confidence inter-
vals are 4.60 and 5.43 to 3 sf.)

Q2 nonwd 95% confidence interval: 506–676 ms (to 3 sf).
(Same technique as Q1, but with 95% confidence intervals.)
Intermediate steps: x = 590.6667; sX = 133.6259; n = 12; SEM = 38.57447; df = 11; tcritical for df = 11 and
two-tailed α of 0.05 is 2.201.

Q3 weight (a) 95% confidence interval: 95.3–103.8 g (to 1 dp). [Working: x = 99.56; sX = 5.918558; n = 10; SEM =
1.871612; df = 9; tcritical = 2.262 for df = 9 and two-tailed α of 0.05.]

(b) Since the interval we calculated in (a) includes 100 g, the mean is not significantly different from 100
g at the 5% level. Alternatively, if you wanted to make more work for your good self by practising a
one-sample t test in full, you could run a one-sample t test: t9 = (mean – 100 g) / SEM = (99.56 –
100) / 1.872 = –0.24. This is not significant at the 5% level.

Q4 traffic This question calls for an unpaired t test (they’re not the same cars each week).

Step 1 – which t test?

Which of the following do we choose from the formula sheet?
• ‘Two-sample t test for unrelated samples — where the variances of the two groups are equal’
• ‘Two-sample t test for unrelated samples — where the variances of the two groups are unequal’

Well, we can run an F test to decide. We can calculate

n1 = n2 = 15; standard deviations s1 = 5.53173; s2 = 5.46243; variances 2
1s  = 30.6; 2

2s = 29.838095

To get F, we put the bigger variance on top of the smaller: 0255.1
838.29

6.30
14,142

2

2
1

1,1 21
====−− F

s

s
F nn . This

is not significant even at the α = 0.1 level. So we want the ‘equal variances assumed’ formula.
Step 2 – the t test

Since n1 = n2, we use this formula (note that df = 28):

325.2
0292.4

66667.4

15

838.296.30

53333.322.37
28
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This is significant at α = 0.05 two-tailed. Using a computer, we would find that for t28 = 2.325, we obtain
an exact value p = 0.0276 (two-tailed).

Comments
• You could argue for the use of a one-tailed t test (you’d find p = 0.0138 one-tailed) given the question

is asking specifically about reductions, but I think a two-tailed test is more sensible — you wouldn’t
really ignore the result if it turned out that the simulated accident increased speeds — and in any
case, it doesn’t alter the conclusion here: the simulated accident did significantly reduce speeds.

• Note that when performing an F test for the purpose of deciding which t test to use, it is ‘conven-
tional’ (though not obligatory) to use a decision criterion of α = 0.05 for the F test (corresponding to
the first F table in the formula sheet). Since you rigged the F ratio so that it’s never less than 1, this
criterion is equivalent to α = 0.1 for the two-tailed question ‘are the variances different?’ (see p. 51
for explanation).

Q5 cards No.
This question calls for a paired (two-related-sample) t test; in other words using the formula

n

s
x

s

x
t

Xx
n

µµ −=−=−1

First we calculate the difference score for each subject (and subsequently ignore the raw scores completely
and operate only with the difference scores). For the null hypothesis that there was no effect of the drug, µ
= 0. We note that n = 12, df = 11, mean = 0.833, SEM = 1.359, t11 = (0.833 – 0) / 1.359 = 0.613; exact
two-tailed p = 0.552 (if you have access to a computer), NS [not significant].

Q6 digit No.
Call Arts students group 1 and Science students group 2. We find that

n1 = 11; n2 = 14
standard deviations s1 = 0.8311, s2 = 0.7184

An F test (see Q4 for method) shows that the variances are not significantly different; F10,13 = 0.83112 /
0.71842 = 1.338 (not significant; NS). So we want a two-sample unpaired t test assuming equal variances
(df = 23)… Group sizes are different, so we use this formula:
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s p  (the ‘pooled variance estimate’)

We calculate

592.0
21411

)7184.0()114()8311.0()111( 22
2 =

−+
×−+×−=ps  and 199.0

14
592.0

11
592.0

807.6745.6
23 −=

+

−=t , NS.

Q7 revfig Yes.
Methods just as Q6. Initial F test: no significant differences between variances (F9,7 = 1.145, NS). Two-
sample unpaired t test assuming equal variances gives t16 = 2.37, two-tailed p = 0.03.

Q8 letters Yes.
Paired t test; t9 = –2.299 (or +2.299, depending on which way you calculate the differences), p = .047 two-
tailed. (Methods just as Q5.)

Q9 Yes.
F test; F8,7 = 9.02, p = 0.0089 two-tailed. (Methods as for the F test in Q4.)

Q10 Yes.
F test; F5,4 = 9.98, p = .045 two-tailed. (Methods as for the F test in Q4.)
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8.4. Answers to Examples 4: nonparametric difference tests

Q1 Short answer: U4,6 = 5. Critical value is 3, so not significant (NS).

Step by step:
• Group B is the larger, so group A is ‘group 1’ and group B is ‘group 2’.
• Group A: n1 = 4. Group B: n2 = 6.

Original data:
group 1 (A): 43 39 57 62
group 2 (B): 51 63 70 55 59 66

Corresponding ranks: Sum of ranks
group 1 (A): 2 1 5 7 15 (= R1)
group 2 (B): 3 8 10 4 6 9 40 (= R2)

Then 5
2

54
15

2

)1( 11
11 =×−=+−= nn

RU  and 19
2

76
40

2

)1( 22
22 =×−=+−= nn

RU . So U is the smaller

of the two, i.e. U = 5. We’d write U4,6 = 5 to indicate n1 and n2 as well.

(Just to check our sums: U1 + U2 = 5 + 19 = 24 and n1n2 = 4 × 6 = 24, so they match, which they must do.

Similarly R1 + R2 = 15 + 40 = 55 and 55
2

1110

2

)1)(( 2121 =×=+++ nnnn
 so they also match.)

Now we look up a critical value for U4,6 (critical U with n1 = 4 and n2 = 6); we find that it’s 3. Since our U
is not smaller than this, it’s not significant.

Q2 U7,9 = 15. Critical value is 13, so NS.

The method is exactly the same as in Q1. Just to make sure you get the ranks right when there are ties,
here they are:

Original data:
group 2 (A): 4.5 2.3 7.9 3.4 4.8 2.7 5.6 6.1 3.5
group 1 (B): 3.5 4.9 1.1 2.5 2.3 4.1 0.7

Corresponding ranks (in bold where ties have been split by taking the mean of the tied ranks):
group 2 (A): 11 3.5 16 7 12 6 14 15 8.5
group 1 (B): 8.5 13 2 5 3.5 10 1

In this example, no more than two scores are tied for the same rank — but you may come across examples
when more scores are tied. The principle is just the same; take the mean of the ranks for which they are
tied. So the ranks of {10, 50, 50, 50, 60} are {1, 3, 3, 3, 5}. The ranks of {2.3, 2.3, 2.3, 2.3, 8.1, 8.9} are
{2.5, 2.5, 2.5, 2.5, 5, 6}.

Q3 U7,7 = 8. Critical value is 9, so *significant*.

Q4 U9,10 = 20. Critical value is 21, so *significant*.

Q5 U16,17 = 76.5. Critical value is 82, so *significant*.

Q6 T7 = 3. Significant at α = 0.05 (one-tailed) or α = 0.1 (two-tailed) (critical value 4).

Full working:

Group A 4.5 2.3 7.9 6.8 5.3 6.2 5.7

Group B 4.3 2.7 9.0 6.7 5.6 10.1 6.9

Difference (B–A) –0.2 0.4 1.1 –0.1 0.3 3.9 1.2

Non-zero differences (as previous row)

Ranks of non-zero differences 2 4 5 1 3 7 6 n = 7

(ignoring sign)

Ranks of + differences 4 5 3 7 6 sum = 25 = T+

Ranks of – differences 2 1 sum = 3 = T–

The T statistic is the smaller of T+ and T–, i.e. 3. We can write T7 = 3 (to show that n = 7). This value, 3, is
smaller than the critical value of T7 for α = 0.05 (one-tailed) or α = 0.1 (two-tailed), which is 4. But our T
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is not smaller than the critical value of T7 for any smaller values of α shown in our tables. So we could say
‘T7 = 3, significant at α = 0.05 (one-tailed) or α = 0.1 (two-tailed)’.

(To check our sums, T+ + T– = 25 + 3 = 28 and 28
2

87

2

)1( =×=+nn
 so all’s well with the world.)

Q7 T9 = 3. Significant at α = 0.01 (one-tailed) or α = 0.02 (two-tailed) (critical value 4).

Q8 T8 = 8.5. Not significant (p > 0.05 one-tailed; p > 0.10 two-tailed; critical value 6).

Q9 T8 = 4. Significant at α = 0.05 (one-tailed) or α = 0.10 (two-tailed) (critical value 6).

Nonparametric test (subscripts are n, prob-
abilities are two-tailed unless stated):

Parametric equivalent (two-tailed in all cases):

Q10 traffic Mann–Whitney U15,15 = 59, p < .05

(The question phrases a one-tailed question,
but you could argue for a two-tailed test.)

F test for heterogeneity of variance: F14,14 = 1.026, NS

Unpaired t test, equal variances: t28 = 2.325, p = .027

Q11 RT Wilcoxon matched-pairs signed-rank T12 = 5,
p < .01

Paired t test: t11 = 3.879, p = .00257

Q12 cards Wilcoxon matched-pairs signed-rank T11 = 25,
NS

Paired t test: t11 = 0.613, NS

Q13 xeno Mann–Whitney U5,6 = 10, NS

(The question phrases a one-tailed question,
but you could argue for a two-tailed test.)

—

Q14 cod Wilcoxon matched-pairs signed-rank T12 = 11,
p < .05

Paired t test: t10 = 2.872, p = .0166

Q15 digits Mann–Whitney U11,14 = 76.5, NS F test for heterogeneity of variance: F10,13 = 1.338, NS

Unpaired t test, equal variances: t23 = 0.199, NS

Q16 revfig Mann–Whitney U8,10 = 16, p < .05

(The question phrases a one-tailed question,
but you could argue for a two-tailed test.)

F test for heterogeneity of variance: F9,7 = 1.146, NS

Unpaired t test, equal variances: t16 = 2.278, p = .031

Q17 conv Wilcoxon matched-pairs signed-rank T12 =
13.5, p < .05

Paired t test: t11 = 2.218, p = .0485

Q18 bats Wilcoxon matched-pairs signed-rank T9 = 3.5,
p < .02

Paired t test: t9 = 2.743, p = .0228

Q19 music Mann–Whitney U10,10 = 48, NS F test for heterogeneity of variance: F9,9 = 1.327, NS

Unpaired t test, equal variances: t18 = 0.051, NS

Q20 letters Wilcoxon matched-pairs signed-rank T9 = 5.5,
p < .05

Paired t test: t9 = 2.299, p = .0471

Q21 vote Mann–Whitney U8,8 = 4, p < .05 —

Q22 rats Mann–Whitney U10,10 = 40, NS F test for heterogeneity of variance: F9,9 = 1.899, NS

Unpaired t test, equal variances: t18 = 0.051, NS

Q23 radar Wilcoxon matched-pairs signed-rank T12 = 12,
p < .05

Paired t test: t11 = 2.449, p = .0323

Q24 col’r Wilcoxon signed-rank T16 = 37, NS

(The question phrases a one-tailed question,
but you could argue for a two-tailed test.)

One-sample t test: t15 = 1.730, NS.

Q25

Use the normal approximation for U. If U20,60 = 400, then 22.2
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This Z score is associated with a p value of 0.0132 (one-tailed) or 2 × 0.0132 = 0.0264 (two-tailed).
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8.5. Answers to Examples 5: χ2

Q1 coin Yes: χ2 = 4.00, df = 1, p < .05.
This is a simple ‘goodness-of-fit’ χ2 test with 2 categories, so 1 degree of freedom. It’s simple:

category observed, O expected, E (O – E)2/E
(based on null hypothesis)

heads 40 50 102/50 = 2
tails 60 50 102/50 = 2

422
)( 2

2 =+=∑
−=
E

EOχ

With df = 1, critical value of χ2 for α = .05 is 3.84, so our test is significant at this level (but not at the .01
level, for which the critical value is 6.63). A computer would tell us that p = .046.

Q2 rat Yes: χ2 = 14.29, df = 1, p < .001

Jump up, jump up, and get down. This is a two-way ‘contingency’ χ2 test. All the rats either jump up or
down (beware — if the up/down numbers didn’t add up to the total number of rats, we’d have to add a
third category… ‘white rats don’t jump’.)

Observed values (O):
females males

up 16 40 row 1 total = 56
down 84 60 row 2 total = 144

column 1 total column 2 total
= 100 = 100 overall total (n) = 200

To work out the expected values, we use the formula

n

CR
columnrowE ji

ji =),(

For example, row 1 (‘up’) has a total of 56; row 2 (‘down’) has a total of 144; both columns have totals of
100. The total number of observations is 200. Therefore, the expected value for (row 1, column 1) is 56 ×
100 / 200 = 28, and so on. So we obtain this:

Expected values (E) under the null hypothesis (no relationship between sex and jumping):
females males

up 28 28
down 72 72

(O–E)2/E
females males

up (16–28)2/28 = 5.143 (40–28)2/28 = 5.143
down (84–72)2/72 = 2 (60–72)2/72 = 2

286.1424.5022143.5143.5
)( 2

2 ==+++=∑
−=
E

EOχ

df = (rows – 1) × (columns – 1) = (2 – 1) × (2 – 1) = 1

Our χ2 is therefore significant at the 0.001 level. (A computer would tell us that p = 0.000157.)

Q3 crash Yes: χ2 = 482.36, df = 1, p < .001 (exact p = 6.56 × 10–107).
Explanation: two categories. Expected values are 1000 (Sundays), 6000 (days other than Sundays).

Q4 die No: χ2 = 8.67, df = 5, NS (exact p = .123).

Q5 giraffe Yes: χ2 = 30.5, df = 6, p < 0.001 (exact p = 3.2 × 10–5).
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8.6. Answers to Examples 6: past exam questions

Q1 (2000 Paper 1) Hidden assumptions — or, waffle you can skip in order to get to the answer.

Before we answer the question, we must decide what kind of techniques to use. Should we use
parametric or nonparametric techniques? There’s no necessarily ‘right’ answer. We could
summarize the theoretical arguments like this:

• The purist might say that the Beck Depression Inventory (BDI) is an ordinal rating scale;
higher scores indicate ‘more depression’ somehow, but the differences between two ratings
are not quantitatively meaningful (i.e. the difference between 0 and 10 is not necessarily
the same as between 20 and 30) — like our example on p. 7 of Army ranks (lieutenant →
captain → major, etc.). This approach would mean that parametric techniques would not be
applicable and we should use a nonparametric analysis.

• Alternatively, we might treat the BDI as an interval scale for the purposes of analysis,
which would allow us to use statistics such as the mean and standard deviation, and appro-
priate parametric tests (assuming their other assumptions are met). There are several ra-
tionales for this, discussed for example by Velleman & Wilkinson (1993), who argue that
the ‘meaning’ of a scale is largely what you make of it — so if you’re happy to speak about
a ‘3-point change in a BDI score’ then you should be happy to use parametric techniques
here. As Francis Bacon (1620) said, truth emerges more readily from error than from con-
fusion. And while ‘common’ doesn’t imply ‘correct’, it is certainly common to analyse
rating scales with parametric techniques — the first paper on depression I looked at for this
purpose analysed the Hamilton Depression Rating Scale using analysis of variance, which
is a parametric technique (Mayberg et al., 2000); the second I found did the same with BDI
scores (Allen et al., 1998).

Being pragmatic, are there other barriers to using one or other technique?

• Part (b), comparing men and women before treatment, could be approached parametrically
with an unpaired t test or non-parametrically with a Mann–Whitney U test, so no problem
there.

• Part (c) could be approached parametrically with Pearson’s r or non-parametrically with
Spearman’s rs correlation, so no problem there.

• But part (a) asks which treatment is more effective — so we have to look at some differ-
ence between pre-treatment and post-treatment scores for each subject. If we take the dif-
ferences (e.g. Post minus Pre scores) and analyse these, in whatever way, we have already
made the assumption of an interval scale of measurement simply by calculating those dif-
ferences, so we might as well use parametric techniques unless their other assumptions are
violated. If we don’t do this, the only information available is whether a subject improved
or not. Since 15/15 Cogth patients improved, and 14/15 Couns patients improved, we’re
never going to find a significant difference with some form of categorical test (and a χ2 test
won’t be valid since there will be expected values <5 and highly uneven across
rows/columns, which violates the assumption of normality).

I’ll illustrate both techniques below. Which will the examiners prefer? I’ve never been a IB ex-
aminer, but if I were marking this, I’d accept either (particularly if some justification were
given to show that you’d thought about the issue). You’ll note that both actually give the same
answers in terms of ‘significant or not’ judgements at conventional levels of α. And you may be
influenced by the amount of work involved — ranking 30 scores is perhaps error-prone during
an exam, whereas your calculator will do much of the work for the parametric tests.

The answer…

(P.T.O.)



8: Answers to examples 103

Parametric version of Q1 (2000 Paper 1)

(a)
First, we calculate the difference between pre-therapy and post-therapy depression scores (Post
– Pre), collapsing across (ignoring) sex. We find they are:

Cogth: {–10, –7, –11, –9, –13, –22, –18, –14, –12, –10, –11, –14, –9, –13, –11}
Couns: {–5, –4, +1, –6, –4, –8, –4, –7, –3, –9, –7, –8, –3, –8, –4}

The Beck Depression Inventory gives high scores to depressed people, and low scores to non-
depressed people. So calculating the scores this way (Post – Pre), the better treatment will have
the lower (more negative) difference score. The mean score in the Cogth group is –12.267 (n =
15, SD 3.770, variance 14.21); the mean score in the Couns group is –5.267 (n = 15, SD 2.658,
variance 7.067). So the Cogth treatment appears to do a better job at reducing depression
scores. Is this a significant difference? Let’s run a two-sample unpaired t test. First, we run an F
test to see if the difference between the variances is significant:
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Since it wasn’t, we can use the ‘equal variances assumed’ version of the two-sample unpaired t
test, with the simpler formula since n1 = n2. So we can calculate t (with 28 df) as follows:
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Therefore, the Cogth group improved significantly more than the Couns group.

(b)
Before treatment, the men’s scores were {42, 35, 32, 28, 26, 38, 33, 34, 29, 23} — a mean of
32 (n = 10, SD = 5.696, variance = 32.444). The women’s scores were {20, 18, 17, 19, 21, 15,
22, 21, 27, 19, 19, 17, 18, 20, 23, 13, 24, 28, 24, 17} — a mean of 20.1 (n = 20, SD = 3.782,
variance = 14.31). Let’s run an unpaired t test again. First our homogeneity-of-variance check:
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So we can use the ‘equal variances assumed’ version of the two-sample unpaired t test, but this
time since the group ns are different, we must use the full formula:
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So the men were significantly more depressed than the women before treatment.

(c)
To answer this question, we correlate the Pre (X) and Post (Y) scores in the Cogth group, and
see if that correlation is significant. Our X–Y pairs are {20, 10}, {18, 11}, etc. If your calcula-
tor gives you r directly, fine. Otherwise, we’ll use the long-winded formula for the covariance:
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This is high, so likely to be significant; let’s check that with the usual t test:
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It is. There is a significant positive correlation (r = 0.888, p < .01) between depression before
and after treatment in the cognitive therapy group.
(Beware: if you had found no correlation, you would not be able to say ‘no’ definitively to
question (c) — remember, you would need to sketch a scatter plot, because r only measures
linear relationships.)
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Nonparametric version of Q1 (2000 Paper 1)

(a)
For reasons summarized above, treating the BDI as an ordinal scale is slightly half-baked here
(in my opinion). The only reasonable way to approach it non-parametrically is to view the BDI
as an interval scale for the purposes of calculating difference scores, but then to analyse these
non-parametrically. First, we calculate the difference between pre-therapy and post-therapy
depression scores (Post – Pre), collapsing across (ignoring) sex. We find they are:

Cogth: {–10, –7, –11, –9, –13, –22, –18, –14, –12, –10, –11, –14, –9, –13, –11}
Couns: {–5, –4, +1, –6, –4, –8, –4, –7, –3, –9, –7, –8, –3, –8, –4}

We then perform a Mann–Whitney U test. Both groups are the same size, so we’ll arbitrarily
call the Cogth group ‘Group 1’ (n = 15) and the Couns group ‘Group 2’ (n = 15). When we
rank the scores from 1–30 we have the following ranks:

Group 1 (Cogth): 11.5, 20, 9, 14, 5.5, 1, 2, 3.5, 7, 11.5, 9, 3.5, 14, 5.5, 9
Group 2 (Couns): 23, 25.5, 30, 22, 25.5, 17, 25.5, 20, 28.5, 14, 20, 17, 28.5, 17, 25.5

So our sums of ranks are R1 = 126, R2 = 339.
We calculate
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arithmetic.) The critical value of U15,15 is 65 for two-tailed α = 0.05, so our U is significant. The
Cogth group did significantly better than the Couns group.

(b)
Before treatment, the men’s scores were {42, 35, 32, 28, 26, 38, 33, 34, 29, 23} (n = 15). The
women’s scores were {20, 18, 17, 19, 21, 15, 22, 21, 27, 19, 19, 17, 18, 20, 23, 13, 24, 28, 24,
17} (n = 20). We can compare these with a Mann–Whitney U test. We call the men’s scores
Group 1, because it’s the smaller group. We rank all the scores (1–30). By group, they are:

Group 1 (M) 30, 28, 25, 22.5, 20, 29, 26, 27, 24, 16.5 rank sum = 248
Group 2 (F) 11.5, 6.5, 4, 9, 13.5, 2, 15, 13.5, 21, 9,

9, 4, 6.5, 11.5, 16.5, 1, 18.5, 22.5, 18.5, 4 rank sum = 217
We calculate
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arithmetic.) The critical value of U10,20 is 56 for two-tailed α = 0.05, so our U is significant. The
men were significantly more depressed than the women before treatment.

(c)
To calculate Spearman’s rs, we rank the Pre and Post scores in the Cogth group. We have these
raw scores:

Pre 20, 18, 17, 19,  21,  42, 35,    32,    15, 28,    22,  21,   26, 27, 19
Pre rank (X) 6,     3,   2, 4.5, 7.5, 15, 14,    13,    1,   12,    9,    7.5,  10, 11, 4.5

Post 10,  11,  6, 10,  8,    20, 17,    18,    3,   18,    11,  7,      17, 14, 8
Post rank (Y) 6.5, 8.5, 2, 6.5, 4.5, 15, 11.5, 13.5, 1,   13.5, 8.5, 3,   11.5, 10, 4.5

We correlate the ranks as X, Y pairs, e.g. {6, 6.5}, {3, 8.5}… If your calculator gives you r
directly, fine. Otherwise, we’ll use the formula for the covariance:
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For n = 15, the tables tell us that the critical value of |rs| is 0.689 at the two-tailed α = 0.01 level,
and our value is bigger than this, so our nonparametric correlation is significant at p < .01. So
there is a significant positive correlation between depression before and after treatment in the
cognitive therapy group.



8: Answers to examples 105

Q2 (2000 Paper 2) n/a — experimental design question.
See Section 9 for advice on these questions.

Q3 (2001 Paper 1) (a) Recognition v recall

There are some hidden ambiguities in this question.

First off, we want to test if subjects differed for recognition and recall scores. This calls for
either a paired t test (parametric) or a Wilcoxon matched-pairs signed-rank test (non-
parametric). If the assumptions of the t test are met (i.e. the differences between each pair of
data come from a normally-distributed population), the t test has more power.

The difference scores (recall minus recognition) are 7, –11, –10, –7, –10, 0, 0, –18, –1, 3.
Placed in order, they are –18, –11, –10, –10, –7, –1, 0, 0, 3, 7.

Parametric or nonparametric? A quick glance (or histogram, or stem-and-leaf plot) suggests
that this isn’t the best normal distribution in the world, so you may favour the Wilcoxon test.
But note this: later, the question wants you not only to correlate these variables (which could be
accomplished either with Pearson’s r or Spearman’s rs) but to perform a regression, for which
you only know parametric techniques (which assume normality of both the recall and recogni-
tion scores and that the difference between two normal random variables should also be nor-
mally distributed).… so you could probably argue the case either way.

If you had run a one-sample t test, you’d have got this: the difference scores have a mean of –
4.7 and an SD of 7.689; n = 10. So
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From tables, you’d have found that p < .05 for a one-tailed test but .05 < p < .1 for a two-tailed
test.

If you’d used the Wilcoxon test, there are 8 non-zero difference scores and you’d have found T8

= 5.5, for which p < .05 one-tailed but .05 < p < .1 two-tailed.

So both approaches give the same answer (which, if you actually chose to run them both,
should reassure you that they’re giving valid answers).

But what of the original question — ‘determine whether recognition performance is better than
recall performance’? This phrasing suggests a one-tailed test, and recognition performance did
give the higher scores, so you may say ‘significant, p < .05 one-tailed’. Alternatively, you may
decide that a real researcher would not want to ignore a difference in the opposite direction, and
say ‘not significant, p > .05 two-tailed’. Since you wouldn’t want to be accused either of mis-
interpreting the question or answering a slightly daft scientific question, you could just say
‘one-tailed p < .05 but two-tailed .05 < p < .1’, showing that you know what you’re talking
about, and then choose and defend a choice of a one- or a two-tailed test. It’s your understand-
ing of what’s going on that counts, rather than any particular choice you justify sensibly.

(b) scatterplot, correlation, regression

‘Construct a scatter plot of the number of pictures recognised against the number recalled.’

You could assign either to the X and Y axes. Looking ahead, we’re going to be asked to predict
recognition from recall, so let’s call recall X and recognition Y so we’re on familiar ground,
predicting Y from X.
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‘Did those subjects who recalled more pictures also recognise more of them?’

That’s asking ‘was there a significant correlation between recall and recognition?’ Either cal-
culate r with your calculator, or work it out like this. Again, I’ll call recall X and recognition Y:
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Is this significant? We work out a t score:
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So the answer’s yes; there is a significant positive correlation (subjects who recognized more
also recalled more).

‘Plot on your graph the line that best predicts recognition performance from recall perform-
ance.’

We need to calculate the regression equation
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So our regression equation is

XY 929.0823.6ˆ +=
We can plot this on our scatterplot, and we’re done.
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Q4 (2001 Paper 2) n/a — experimental design question.
See Section 9 for advice on these questions.

Q5 (2002 Paper 1) A correlation and regression question…

(a) … estimate the rate of ‘mental rotation’ from the data.

The trick in the question is that the raw data you’ve given don’t represent the rotation angles,
since ‘the transformation is thought to be carried out over the most direct route’. So first, we
must calculate the corrected data:

original (°) 0 45 90 135 180 225 270 315
rotation (°) 0 45 90 135 180 135 90 45
RT (ms) 518 563 638 781 896 738 625 552
error (%) 0.87 0.84 1.47 2.44 4.20 2.29 1.33 0.53

We want to predict RT (Y) from the (corrected) rotation angle (X). We have a series of paired
values, n = 8, and we’d like to find the regression equation
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We can easily find D90=x , 9.663=y ms, sX = 58.92°, sY = 130.5 ms. Your calculator should

also give you r directly; if not, calculate the covariance
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We don’t actually need to find r if we’re doing it by hand, but a calculator will give us:
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So our regression coefficients are
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and our regression equation is

XY 148.26.470ˆ +=

I’ve tacked on the units of a and b above — you can easily work out what they must be, since
you start with a number in degrees (X), and multiplying it by b gives you a number in ms (Y),
and a must have the same units as Y. The reason for doing this is because these numbers are
what you’re actually after. The answer to ‘what is the rate of mental rotation?’ is 2.148
ms/degree (b)…

(b) What is your best estimate of the time occupied by the remaining components of the reac-
tion time?

… and the remaining reaction time is 470.6 ms (a).

Although the question doesn’t require it, you would be well advised to do a quick sketch of a
scatterplot — for one thing, to see if there really is a linear relationship between X and Y:
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A nice straight line. One benefit to doing a scatterplot in this question is that it might save you
the embarrassment of failing to adjust the rotation angle. If you were in an exam-induced daze
and didn’t fix the angles, your scatterplot would look like this:
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… which certainly isn’t a linear relationship, and might make you notice that something was
amiss.

(c) Is there a significant relationship between reaction time and error rate?

Here we go again — but this time, the question only asks ‘is there’ a relationship, not ‘what is’
the relationship. So we only need to calculate a correlation and test its significance. This time
let’s call RT X and error rate Y (or as you see fit). Either get r from your calculator or calculate
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Such a high correlation is certain to be significant with 8 observations. To test this formally, we
calculate a t score:
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(since the critical value for t with 6 df is 3.707 for a two-tailed α = 0.01). So there is a signifi-
cant relationship between RT and error rate. The scatterplot (not required but a sketch may
be helpful) is shown below.
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But please note: if there had been no significant correlation, you would not have been able to
say there was no relationship, just no linear relationship. This is where scatterplots help (is
there a nonlinear relationship?), so you’re always advised to sketch one, however rough it is.

This final part is not part of the question… but you might be wondering whether there’s just a
relationship between RT and error rate because RT is related to the rotation angle, and errors
are related to the rotation angle. We’d work out the correlation between RT (call it X) and er-
ror rate (call it Y), ‘partialling out’ the effects of rotation angle (call it Z). First we need to
work out the one correlation we haven’t worked out yet — between rotation angle (corrected so
all the angles are ≤180°, of course) and error rate. It’s 0.909. Then we can calculate
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So even accounting for the relationships between RT and rotation angle, and between error
rate and rotation angle, there’s a pretty strong relationship between RT and error rate (though
it’s less than the correlation we first worked out of 0.974).

Q6 (2002 Paper 2) n/a — experimental design question.
See Section 9 for advice on these questions.

Q7 (2003 Paper 1) (a)
We begin with a confidence interval question. Our sample has a mean of 614.8 and a standard
deviation of 47.98, and n = 10. Since we’ve been told to assume a normal distribution and find
the 95% CI, we can use our formula:

Confidence intervals = dfncritical
X t
n

s
x )1( −±

For 95% confidence intervals, we want critical values of t for α = 0.05 two-tailed, with n–1 = 9
df. From our tables, this critical value is 2.262. So we can plug that into our formula:

95% confidence intervals = 32.348.614262.2
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So there is a 95% probability that the true population mean lies within the range 580 to 649 (to
3 sf).

(b)
The second part of this question asks about a difference between groups. Regardless of all the
irrelevant guff about the experimental design, the key point is that we have two independent
groups of scores, n = 6 per group. So we’d like to run an two-sample unpaired t test. We can
justify this since we’ve already been told that reaction times on this task are from a normally-
distributed population (and we can see that they’re not grossly non-normal). The first group has
mean = 555.2, SD = 57.26, variance = 3279. The second group has mean 601.8, SD = 37.02,
variance = 1370. First, we should check the variances are not significantly different with an F
test:
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Since the variances are not significantly different and n1 = n2 (= n), we can use our simple for-
mula for the two-sample unpaired t test assuming equal variances:
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So the difference between groups was not significant (p > .1 two-tailed).

Q8 (2003 Paper 2) n/a — experimental design question.
See Section 9 for advice on these questions.

Q9 (2004 Paper 1) (a)
We’re considering only the subjects who received placebo, so these are the data that should be
used for the scatterplot and correlation to examine the relationship between magical ideation
and left-turning behaviour:

Subject 1 2 3 4 5 6 7 8
MI 8.1 5.2 9.7 12.8 12.6 14.2 2.4 8.3
Left % 44.7 41.6 49.6 55.3 50.9 60.8 41.7 51.4

The scatterplot looks something like this:
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Calculation of Pearson’s correlation coefficient gives:

r = 0.902
n = 8
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From our tables of critical values of t, we can therefore establish that p < 0.01 two-tailed; there
is a significant linear correlation.

The proportion of variation accounted for is 0.813, or 81.3% (= r2).

(It would be less optimal to use a nonparametric approach: the question informs us that the data
are from a normally-distributed population, validating the use of Pearson’s r. Furthermore, r2

isn’t particularly meaningful for the nonparametric approach with Spearman’s correlation, so
it’s difficult to answer the question about the proportion of variability accounted for without
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using the parametric approach.)

(b)
This part of the question calls for a test to compare two unrelated groups. The optimal test (in
terms of power) is the unpaired t test. The data are may be summarized like this:

placebo drug
44.7 61.9
41.6 57.2
49.6 63.2
55.3 53.1
50.9 52.3
60.8 47.3
41.7 54.2
51.4 48.3

mean 49.5 54.69
n 8 8
stdev 6.689 5.790
variance 44.74 33.52
SEM 2.365 2.05

A preliminary F test establishes that the variances are not significantly different:

NS 1.33,
52.33

74.44
7,72
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Therefore, since the group sizes are equal, we perform the t test as follows:
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So there is not a significant difference between the dopamine agonist and placebo.

Alternative, but less powerful approach:
The question has explicitly given us the assumptions of the t test, so it is less optimal (less
powerful) to use a nonparametric approach. However, if you chose to use a nonparametric ap-
proach regardless, the correct test to use would be the Mann–Whitney U test:

placebo ranks drug ranks
44.7 3 61.9 15
41.6 1 57.2 13
49.6 6 63.2 16
55.3 12 53.1 10
50.9 7 52.3 9
60.8 14 47.3 4
41.7 2 54.2 11
51.4 8 48.3 5

n = 8 n = 8
rank sum 53 = R1 rank sum 83 = R2
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So Mann–Whitney U = 17. Critical U for n1 = n2 = 8 is 14 (from tables), so NS.

Optimal, but not taught at NST 1B level:
The optimal technique would be actually be an analysis of covariance or ANCOVA (using MI
scores as covariate); this takes account of variations in MI scores, and having done so, it turns
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out that there is an effect of the drug (p < 0.001). But that’s beyond this course!

Q10 (2004 Paper 2) n/a — experimental design question.
See Section 9 for advice on these questions.
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8.7. Answers to Examples 7: mixed

Q1 0.62% (Z = –2.5, corresponding to p = 0.0062)

Q2 No (preliminary F test of variances, F14,14 = 1.366, NS; unpaired t test assuming equal variances, t28 = 1.1397,
NS, exact p = .264)

Q3 (a) 0, –2.5, –5, 5, 1.4

(b) 30, 70, 69.5, 24.2, 66.5, 46.7

(c) 137

(d) 0

(e) 57

Q4 No; 344.,,134.22
2 == pNSχ . (Note that the expected values for left and right turns are not equal — there

might some bias that promotes left or right turning independent of the rats’ breeding. That’s why there are are
several rat groups. Calculate the expected values as usual for a 2 × 2 contingency table.)

Q5 Correlating the rank order of the amounts with the rank order of their arrival time (Spearman’s correlation coef-
ficient) gives rs = –0.732 (n = 15), p < .01 two-tailed.

Q6 (a) mean 45, SD 15

(b) 81.8%

(c) between 34.9 and 55.1 (to 1 dp)

Q7 Yes (paired t test, t19 = 2.27, exact p = .035).

Q8 No (r = –0.19, t10 = –0.613, NS).

Q9 No (preliminary F test to check homogeneity of variances F7,14 = 1.36, NS; unpaired two-sample t test assum-
ing equal variances t21 = 1.71, NS, exact p = .59).

Q10 (a) [only 100,000 people above IQ of] 143

(b) [num. people with IQ between 95 and 105] 13,055,860 (should really round this to 3 sf!)

(c) [… between 60 and 70] 945,982 (should really round this to 3 sf!)

Q11 Yes. A preliminary F test gives F9,11 = 2.982, two-tailed p = .09. Whether you decide this is OK and proceed to
an equal-variances-assumed unpaired t test (t20 = 2.7999, p = .011 two-tailed), or prefer a t test not based on the
equal-variances assumption (t′9 = 2.6696, p = .026 two-tailed) — which is probably better (most people use
two-tailed α = 0.1 for preliminary F tests) — you still find a significant difference even with two-tailed t tests.

Q12 Yes! 122
12 102.7,72.78 −×== pχ .

This test assumes equal independence of observations (that no student got more than one degree, for example),
normality (no expected values very small and no dramatic skew of row/column values — this looks OK), and
inclusion of non-occurrences (that we’ve included all the students and universities that we studied). The first of
these is the one that we’d have to be most careful about checking!

Q13 No significant difference; Mann–Whitney U7,13 = 44, NS.

Q14 Yes; 0037.,52.152
4 == pχ .

Q15 Rearrange the data into a 2 × 2 contingency table: {scratching/not scratching} versus {tooth-baring/not tooth-

baring}. Then we find 0087.,88.62
1 == pχ , so yes, the two are ‘connected’. The way they’re connected seems

to be that they’re unlikely to occur together!

Q16 Three examples of (potentially) relevant tests:

(a) Are husbands’ preferences correlated with those of their wives? No (r = 0.310, t24 = 1.60, NS).

(b) Do the husbands’ preferences vary more or less than the wives’? There is a significant difference in vari-
ance (F25,25 = 6.29, p < .001) — husbands’ preferences vary more.

(c) Are husbands’ preferences (mean 2.61) significantly different from their wives’ (mean 2.42)? No (paired t
test, t25 = 0.385, NS).

(d) Is there a relationship between sex and number of children? Perhaps I should rephrase that… is there a
relationship between gender and desired number of children? Yes. Categorize people by gender and by
number of children desired (e.g. ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘more than 4’) and perform a contingency χ2 test. If

you use these categories, you find 0074.,81.152
5 == pχ . However, this approach assumes independence

of husbands’ and wives’ preferences, which is perhaps questionable (the answer to (a) just tells you there’s
no overall linear correlation, which isn’t the same thing).

Thanks to MRFA for (d), which I didn’t think of. You could also apply nonparametric versions of some of the
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above (simply a different strategy — these additional tests don’t provide new information, so running a para-
metric and a nonparametric version of the same test wouldn’t ‘count’ as two tests). The only rather artificial
extra question I can come up with is to use the order information, e.g. ‘is there a relationship between the mean
number of children preferred by a couple and the order in which the couples were asked?’ (no; correlation be-
tween the couple order and the rank order of the couple’s mean preference, rs = –0.326, p > .1 two-tailed).

Q17 Yes; t9 = 3.21, p = .011 by paired t test.

Q18 Not quite: correlation r = –0.507, t13 = –2.122, p = .054.

Q19 No, unless you were in a particularly suspicious mood: 066.,36.102
5 == pχ .

Q20 Yes; Wilcoxon signed-rank T15 = 21, p < .05 two-tailed.

Q21 Yes. You have to calculate ‘hits’ from what you know (misses and totals). Then 00062.,27.172
3 == pχ .

Q22 A bit nasty, this, and way beyond exam standard. You’d need to calculate which normal distribution best fits
the data, and then see whether there’s a significant difference between the actual values and the values pre-
dicted by this normal distribution. You could do it like this:

(a) Take the dioptre measurement as your variable. So you have 11 observations with value –5, 29 observa-
tions with value –4… up to 5 observations with value +5. There are a total of n = 1000 observations. The
sum of the observations is (11 × –5) + (29 × –4) + … + (5 × +5): we have 174−=∑ x . So the mean is

174.0
1000

174 −=−=∑=
n

x
x . Now we need the SD:
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(b) The second phase is to determine the expected values for a normally-distributed variable with a mean of –
0.174 and an SD of 1.515 if we measured them in a categorical way. It would be reasonable to suppose that
the ‘0D’ category includes people measuring –0.5 to +0.5D; the ‘1D’ category includes people from +0.5
to +1.5D, and so on. So we can calculate Z scores for each boundary between dioptre categories, work out
the proportion we expect to find in each category, and multiple by 1000 to get the number of observations
we expect. That gives us expected values like this:

–5D –4D –3D –2D –1D 0D +1D +2D +3D +4D +5D

1.93 11.90 48.27 128.35 224.13 257.05 193.63 95.79 31.10 6.62 0.92
(c) Finally, we run a χ2 test with these as the expected values. Since we have made the observed and expected

values agree as to n, x , and sX, we have lost three degrees of freedom (rather than a ‘conventional’ χ2 test,
in which we make them agree only as to n, and lose only one df). So df = k – 3 (where k is the number of

categories) = 8. We find that 1102
8 1087.2,4.534 −×== pχ , which we could call ‘very significant indeed’!

The lens powers do deviate significantly from a normal distribution.

Out of interest, here are the histograms of the observed values and corresponding expected values (for the same
n) based on a normal distribution having the same mean and standard deviation. (Trivia: the posh name for this
type of deviation from normality — too peaked in the middle — is leptokurtic.)
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9. Experimental design tips and glossary

9.1. About the experimental design questions

There’s no ‘right’ answer to an experimental design question. Good experimental design re-
quires that you understand the question well — if you don’t know what retroactive and proac-
tive interference are, for example, you’ll have difficulty with Q3(c). But in general, what things
should you think about when designing experiments?

One vital thing is to establish what you’ll measure. What numbers will you actually write
down? For example, for exam question Q3(a), will you measure baby looking times? Baby ap-
proach distances? Proportion of occasions on which the baby approaches? Another example:
exam Q8 (part 2) asks about investigating whether aspirin actively affects the operation of the
active mechanism in the cochlea. Will you measure detection thresholds at different frequen-
cies? Will you measure frequency selectivity (and how)? Will you measure otoacoustic emis-
sions? To choose, you need to know what aspects of hearing actually depend on the active
mechanism of the cochlea — obviously, not all aspects of hearing do.

You also need to determine your subjects. Will you use people? Owls? Rats? Dissected coch-
leas? If you use humans, who? Psychology undergraduates? People recruited from newspaper
adverts? Will you impose restrictions on the age or sex of your subjects? Will you exclude them
if they have a history of mental illness, head injury, or ototoxic antibiotic use? If you think the
specifics are not important, you might simply say that you’d recruit subjects with normal hear-
ing. Sometimes your experimental technique influences who you recruit: you can’t give PET
scans to young women (potential egg damage from radiation), you can’t put people with im-
planted magnetic metal into an MRI scanner (it accelerates hard and tends to kill), and you
might be careful before giving a drug that makes people unhappy to those with a history of se-
vere depression.

Will you use a correlative or a causal technique? In our aspirin example, will you seek out
people who use lots of aspirin and compare them to people who don’t? If so, do you need to
match these groups somehow? What might confound your interpretation of any differences? Or
will you use a causal technique, in which you give aspirin to subjects in some fashion and com-
pare them to people who didn’t receive aspirin?

Many psychological experiments are based on simple intervention studies, where treatments are
controlled by the experimenter. If done properly, these allow inferences to be made about
whether the treatment caused an effect. They may use between-subjects (between-groups) or
within-subjects designs

• A simple between-groups design: assign subjects (at random) to groups. Treat each
group differently, before giving them all the same test. If the test results for the groups
are different, this is evidence that the treatment influences performance.

• A simple within-subjects design: test the same subjects repeatedly after (or during) dif-
ferent treatments, counterbalancing for the order in which you give the treatments and so
on. If the results differ across treatment conditions, this is evidence that the treatment in-
fluences performance.

• Sometimes we have to use more complex experimental designs. For example, when
more than one treatment is given, they can all be given in a between-subjects fashion, or
all in a within-subjects fashion, or some between- and some within-subjects.

• Sometimes we have to consider differences between groups that are not assigned by the
experimenter — such as gender, age, IQ, prior illness, prior drug use. The exact inter-
pretation of differences between groups in such an experiment may be more compli-
cated, as the effect of one variable may be confounded by another. For example, if you
give all the male subjects treatment A, and all the female subjects treatment B, you
won’t be able to tell whether a difference between the groups is due to the treatment dif-
ference or the sex difference — these two variables are confounded. In general, random
assignment of subjects to groups is a good way to get around this problem.

So will you use a between-subjects or a within-subjects design? In our aspirin example, will
you test subjects on aspirin and the same subjects off aspirin? Or will you give some subjects
aspirin and some not?
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• If you use a within-subjects design, will you test ‘off’ aspirin and then ‘on’? Or ‘on’
then ‘off’? Will there be effects of practice on the task that affect the interpretation in
this case? Will the drug have permanent or long-lasting effects? Should you randomize
or counterbalance the order (so some subjects get aspirin first and some get placebo
first)?

• When you’re not giving the drug, will you give nothing, or a placebo? If you use a pla-
cebo, will the experimenter be ‘blind’ as to the condition the subject is in? The impor-
tance of the experimenter’s awareness, or lack of it, applies more generally whenever
there is the possibility that the experimenter’s expectations may influence the subject, or
influence the recording of the data, consciously or unconsciously.

• If you use a between-subjects design, how will you assign subjects to groups?

Sometimes the question asks about how you will analyse the data you collect. The design of
your experiment partly determines the analytical technique. Do you have quantitative or cate-
gorical data? The use of a between-subjects or a within-subjects design influences the ‘related-
ness’ of your data, and may determine whether you will use related (e.g. paired) or unrelated
(unpaired) statistical tests. What will your null hypothesis be? There may be some things you
can’t specify in advance (e.g. you may prefer to use parametric tests like the t test, but you
don’t always know whether their assumptions will be met until you collect the data; if their
assumptions are violated, you may need to use nonparametric tests instead — and you can sim-
ply say that).

Good designs are simple, and answer the question clearly. If you find an effect in your experi-
ment, will the interpretation be simple?

Sometimes you may need to design a series of experiments rather than a single experiment.
Think about what each experiment should aim to establish; keep each experiment as simple as
possible. Sometimes the most sensible choice of the next experiment depends on the results of
previous experiments; you can do no more than anticipate likely outcomes or lines of investi-
gation if you are outlining a proposed series of experiments.

Good designs are also practical. If your design calls for the use of a zero-gravity cell culture
environment, it may be impractical or expensive — but if the question is important (will it save
lives? improve the lot of millions?), maybe it’s worth it. On the other hand, if you could do the
same experiment with a set of headphones and a signal generator, that’s probably preferable. If
your design involves inducing permanent hearing damage in volunteer humans, it’s highly
questionable ethically. When using animals, experimenters always seek to refine experiments
to minimize suffering and distress, reduce the number of animals used, and replace live animals
with alternatives when possible.

Finally, your design may be excellent, or it may just be the best thing you can think of during
the exam. If you spot problems or flaws in your design, discuss them. You’re not expected to
design something perfect, but if you know there are problems, talk about them.

Many of these issues were also discussed in Section 1.

9.2. Glossary of jargon

You may encounter the following terms in relation to experimental design. This glossary is here
to help you to understand descriptions of experiments; you don’t have to use the jargon for your
own answers (though you can if you want).

• Between-groups design. Same as between-subjects design.
• Between-subjects design. A design in which individual subjects are each given only one

treatment; different treatments are given to different groups of subjects. For example, we
might assign subjects to group A or group B; each individual has their performance on a
task measured after being given either sugar (for group A), or amphetamine (for group B).
See also within-subjects design.

• Blind. Unaware. ‘Blind to’ means ‘unaware of’. For example, in a single-blind drug study,
the subject is unaware of whether he has taken an active drug or a placebo. If the subject is
not blind, his expectations of the treatment’s effects may influence the results. For exam-
ple, if the subject is a depressed patient in a study examining the effects of a new antide-
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pressant, he may expect good things of the drug, and therefore feel good about the fact that
he’s receiving it, and feel less depressed. See also placebo, double-blind.

• Clever Hans effect. The fact that subtle and unintentional cueing by an experimenter,
which reflects the experimenter’s own expectations, may influence subjects. Wilhelm von
Osten was a retired German schoolmaster who attempted to teach his Russian stallion Hans
arithmetic. Von Osten would show Hans numbers on cards; the horse would tap out the
number, or the answer to simple mathematical problems, with its hoof. A group of observ-
ers including a zoologist, a vet, and a politician were convinced; they could detect no fraud
or cueing on the part of von Osten. Finally, Oskar Pfungst conducted a very thorough se-
ries of experiments in 1907 to investigate Hans’s performance (Pfungst, 1907). First, he
established that if von Osten did not know the number or answer, Hans did not succeed.
Second, he showed that if the horse could not see von Osten, it also failed to get the right
answer. Pfungst then turned his attention to von Osten, and noticed that he made almost
imperceptible alterations in posture when interrogating the horse. Von Osten inclined his
head as the horse began to tap the ground, and straightened slightly, lifting his eyebrows
and flaring his nostrils slightly, when the horse approached the correct answer. The horse
had learned to respond on the basis of these cues. Pfungst then stood in front of the horse
himself, remained silent, showed no cards, and yet made Hans tap his hoof and cease using
slight head movements. Pfungst went on to perform experiments in which he played
Hans’s role; he showed that over 90% of human subjects provided subtle bodily cues as the
correct answer was approached (attributed to ‘tension release’), just as von Osten had. See
also double-blind.

• Confound. Two variables are confounded when their effects are impossible to distinguish.
Suppose we want to establish whether a drug (call it treatment A) influences performance
on a particular task, compared with placebo (call it treatment B). If you give all the male
subjects treatment A, and all the female subjects treatment B, you can’t tell whether a dif-
ference between the groups is due to the treatment difference or the sex difference — these
two variables are confounded. In general, random assignment of subjects to groups is a
good way to get around this problem (see also randomization). Common confounding fac-
tors worth thinking about are time (see order effects) and who collects the data.

• Control. OED: ‘A standard of comparison for checking inferences drawn from an experi-
ment; specifically a patient, specimen, etc., similar to the one(s) being investigated but not
subjected to the same treatment.’ If two groups are compared and one receives some criti-
cal treatment but the other does not, we refer to the latter as the control group. (See also
placebo, sham.)

• Counterbalancing. A method of avoiding confounding among variables. Suppose subjects
are tested on both an auditory reaction time task and a visual reaction time task. If all the
subjects are tested on the auditory task first, the task order (first versus second) is con-
founded with the task type (auditory versus visual), and order effects such as a practice ef-
fect may account for any observed differences. The experiment should have been designed
better: task order and task type should have been counterbalanced, such that half the sub-
jects were given the auditory task first and half were given the visual task first. When there
are several conditions, a Latin square is often use to design the counterbalancing.

• Dependent variable. A variable that you measure, but do not control. Compare independ-
ent variable.

• Double-blind. Where both the experimenter and the subject are unaware of the treatment
that the subject receives. Otherwise, either the experimenter’s expectations, or the sub-
ject’s, or both, may influence the results. For example, if Alice is interviewing patients
about their mood as part of a study looking at antidepressant effects, and is aware that the
patient has been on a new drug of which Alice has a high opinion, she may expect the pa-
tient to be happier, therefore be and appear happier herself, and therefore influence the an-
swers. See clever Hans effect. The ‘gold standard’ for a medical drug trial is a double-blind
placebo-controlled study (see also placebo, control).

• External validity (also known as generality or applicability). The degree to which your
experimental results can be applied to other populations and settings. If you examine reac-
tion times in Cambridge IB psychology undergraduates, to what extent can your results be
generalized to Cambridge undergraduates? To UK undergraduates? To undergraduates in
general? To people in general? Compare internal validity.

• Factorial design. When an experimenter is interested in the effects of two or more treat-
ments, it is common to analyse them in a factorial design. Suppose we are interested in the
effects of nicotine on psychomotor performance. We might be interested in the effects of
both (1) nicotine dose, and (2) the difficulty of the task. So one variable (‘factor’) is drug
dose; the other is task difficulty. Suppose there are three doses (none, low, high) and two
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levels of task difficulty (easy, hard). In a factorial design, we test every combination of the
factors (i.e. none/easy, none/hard, low/easy, low/hard, high/easy, high/hard). Factorial
designs can have more than two factors. We have not covered the statistical techniques re-
quired to analyse factorial designs, but they are widely used in research.

• Independent variable. A variable that you control or manipulate (e.g. drug versus pla-
cebo). Compare dependent variable.

• Internal validity. To what degree are you justified in drawing conclusions from your data?
Basically, was your experiment any good? If you have overlooked a confound, you may be
unable to interpret your data in the way you had hoped, and you do not have good internal
validity. Compare external validity.

• Interpretation bias. When the interpretation of evidence is influenced, sometimes inap-
propriately, by prior beliefs. Confirmation bias — people’s tendency to notice and remem-
ber evidence that confirms their beliefs or decisions, and to ignore, dismiss, or forget evi-
dence that is discrepant. Rescue bias — discounting data by finding selective faults in the
experiment. Auxiliary hypothesis bias — introducing ad hoc modifications to imply that an
unanticipated finding would have been otherwise had the experimental conditions been dif-
ferent. Mechanism bias — being less sceptical when underlying science furnishes credibil-
ity for the data. “Time will tell” bias — the phenomenon that different scientists need dif-
ferent amounts of confirmatory evidence. Orientation bias — the possibility that the hy-
pothesis itself introduces prejudices and errors and becomes a determinate of experimental
outcomes. (See Kaptchuk, 2003.)

• Latin square. (You don’t need to know this!) A way to counterbalance the order in which
subjects are tested in different conditions. A Latin square is a n by n grid in which each of
n symbols appears exactly once in each row and once in each column. This can be used to
allocate subjects to different treatment orders. If there are four treatments (A, B, C, D) and
each subject must be tested in each condition once, a good Latin square is ABCD, CADB,
BDAC, DCBA. If you randomly assign subjects to these four treatment orders, you will
have successfully counterbalanced for treatment order. Each treatment immediately pre-
cedes and follows the other conditions once, known as a digram-balanced Latin square. (A
much less good Latin square is ABCD, BCDA, CDAB, DABC, known as cyclic.)

• Matching. One way to avoid confounds between variables. Suppose we want to compare
the performance of two groups of people on a reaction-time task; one group will receive
drug and the other will receive placebo. We want our groups not to differ in any variable
except drug v. placebo — otherwise our treatment and that variable will be confounded.
Matching would involve deliberately measuring all sorts of things that we think might be
relevant (e.g. IQ, age, sex, reaction time on a different task…) and assigning subjects to
groups so that both groups have a similar distribution of sex, age, IQ, and so on. See also
randomization, which is the other very important method to use in this situation; randomi-
zation deals with all the other variables you haven’t thought about.

• Order effect. A concern of within-subjects designs, in which subjects are each tested sev-
eral times: the order in which you test subjects may be an important factor. This may be
due to practice (performance getting better with time), or other factors such as fatigue or
boredom (getting worse with time), lingering drug effects (e.g. drug not yet fully gone
from the body from a previous occasion; tolerance develops to drug with time), etc.

• Orientation bias. When prior expectations influence the collection of data. For example,
psychology graduate students, when informed that rats were specially bred for maze
brightness, found that these rats outperformed those bred for maze dullness, despite both
groups really being standard laboratory rats assigned at random. (See Kaptchuk, 2003.)

• Placebo. Literally, ‘I shall please’; a pill or procedure prescribed by a doctor for the psy-
chological benefit of obtaining a prescription, rather than any physiological effect. Often a
sugar pill. A placebo effect is an effect caused by a placebo. In research design, to establish
the effect of a drug, one must compare it with something similar in all respects except for
the drug itself. Therefore it’s not wise to give one group of people the drug and the other
(control) group nothing; the control group should be given a placebo. If the drug is in pill
form, the placebo should be an inactive pill, labelled identically; if the drug is an injection,
the placebo should be some inactive substance that is also injected (e.g. saline solution, or
whatever liquid ‘vehicle’ the drug is dissolved in).

• Practice effect. If subjects are tested repeatedly, they may get better as a result of practice.
An example of an order effect. Suppose you want to measure the effect of amphetamine on
performance of the computer game Tetris, using a within-subjects design. You could give
your subjects a placebo and test them; you could then give them amphetamine and retest
them. Suppose they’re better the second time: is this due to the drug or to the effects of
practice? You can’t tell: the two are confounded. You should have counterbalanced the or-
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der assignment.
• Publication bias. The tendency of referees and journal editors (and sometimes the scien-

tists concerned) to publish studies (or not) based on the direction or strength of the study’s
findings. For example, journals like to report ‘significant’ effects, because they seem more
interesting, meaning that studies failing to find that a treatment has an effect may be less
likely to be published. As a consequence, too high a proportion of what you read in jour-
nals would suggest the treatment does have an effect.

• Randomization. Random assignment of subjects to groups and/or treatment conditions is
an important way to avoid inadvertent confounds (q.v.). Suppose we want to compare the
performance of two groups of people on a reaction-time task. One group will receive a
drug and the other will receive a placebo. We want our groups not to differ in any factor
except that which we’re manipulation — otherwise our treatment and that variable will be
confounded. We might attempt to match groups (see matching) for relevant variables. But
we probably can’t explicitly match groups on every variable that might potentially be a
confound; eventually we need a mechanism to decide which group a subject goes in, and
that method should be random assignment. So in our example, if we have plenty of sub-
jects, we could just randomly assign them to the drug group or the placebo group. Or we
could match them a bit better by ranking them in order of reaction time performance and,
working along from the best to the worst, take pairs of subjects (from the best pair to the
worst pair), and from each pair assign one to the drug group and one to the placebo group
at random. Random assignment takes care of all the factors you haven’t thought of — for
example, if your subjects are all going to do an IQ test in your suite of testing rooms, you
should seat them randomly, in case one room’s hotter than the others, or nearer the build-
ers’ radio outside, or whatever.

• Sham. Similar to placebo; the term is often used to refer to practical (e.g. surgical) proce-
dures. If one group of rats receives amygdala lesions, the appropriate control group is
probably not a set of unoperated rats, but a set of rats who have received ‘sham’ surgery —
surgery identical except for the omission of the toxin that destroys the amygdala, say.

• Within-subjects design. A design in which individual subjects are each given more than
one treatment, at different times. For example, each individual has their performance on a
task measured after being given sugar, and on a separate occasion after being given am-
phetamine. These designs are often statistically powerful (they need fewer subjects to de-
tect effects of the treatment), since differences between subjects’ ability to perform the task
don’t contribute to the measurement error. Problems with these designs include practice
and order effects; attention must be paid to proper counterbalancing of the order in which
subjects are tested in different conditions.
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10. Tables and formulae

Notation used

X random variable that can take many values
x single observation from the random variable X

Σx The sum of all values of x

µ Population mean
x Sample mean
σ Population standard deviation
s Sample standard deviation
σ2 Population variance
s2 Sample variance

H0 null hypothesis
H1 alternative hypothesis (research hypothesis)

p probability of obtaining the observed data if H0

is true
α significance level = probability of making a

Type I error (rejecting H0 when it is
true)

β probability of making a Type II error (accepting
H0 when it is false)

Descriptive statistics
mean
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x
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The normal distribution

Converting any normal distribution N(µ,σ2) to the stan-
dard normal distribution Z = N(0,1) σ

µ−= x
z

Correlation and regression

Sample covariance of two variables X and Y (the left-hand
expression is the ‘conceptual’ formula; the right-hand one
is mathematically identical but quicker to compute) 11

))((
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Pearson product–moment correlation coefficient (varies
from –1 to +1)
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r
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Adjusted r (always positive)
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Is r significantly different from zero? A t test with n – 2
degrees of freedom
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This test assumes (1) the variance of Y is roughly the same for all values of X, i.e. homogeneity of variance; (2)
for all values of X, the corresponding values of Y should be normally distributed; (3) X and Y are both normally
distributed. Look up the value of t in the tables of the t distribution to see if it is significant.

Regression, predicting Y from X

linear regression equation coefficients

bXaY +=ˆ xbya −=
X

Y

X
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cov
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Difference tests — parametric

Standard error of the mean (SEM)

n

s
s X

x =

One-sample t test and two-related-sample (paired) t test

n

s
x

s

x
t

Xx
n

µµ −=−=−1

where the null hypothesis is that µ=x . For a one-sample t test, x  and sX refer to the mean and standard devia-
tion of the observations from the single sample; for a two-sample t test, they refer to the mean and standard de-
viation of the differences between the two samples in each pair. The t test has n – 1 degrees of freedom.

Two-sample t test for unrelated samples — where the variances of the two groups are equal

2

2

1

2

21
221

n

s

n

s

xx
t

pp

nn

+

−=−+  where 
2

)1()1(

21

2
22

2
112

−+
−+−=

nn

snsn
s p

where 2
ps  is the pooled variance and the null hypothesis is that 21 xx = . The denominator is the standard error of

the differences between means (SED). The t test has n1 + n2 – 2 degrees of freedom. If the two samples are of
equal size (n1 = n2 = n), a simpler formula can be used:
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Two-sample t test for unrelated samples — where the variances of the two groups are unequal
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(Note that this is written t′, not t.) Test this just as if it were a t score, but with fewer degrees of freedom: degrees
of freedom = (n1 – 1) or (n2 – 1), whichever is smaller.

Assumptions of t tests

(1) The t test assumes that the underlying populations of the scores (or difference scores, for the paired t test)
are normally distributed.

(2) For a two-sample test, in order to use the equal-variance t test, we assume the two samples come from

populations with equal variances ( 2
2

2
1 σσ = ). If this is not the case, especially if n1 ≠ n2, we should use the

unequal-variance version of the t test.

The F test for differences between two variances (used to choose the form of the t test)

Put the larger variance on top of the ratio:
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The subscripts on the F are the numbers of degrees of freedom in the numerator and denominator, respectively
(either n1 – 1 and n2 – 1, or n2 – 1 and n1 – 1). If the calculated value of F exceeds the critical value for the rele-
vant α and degrees of freedom, reject the null hypothesis that the two samples come from populations with equal
variances, and use the unequal variances form of the t test to test for differences between the means of the two
samples. If the calculated value of F is not significant, assume that the populations have equal variances, and use
the equal variances form of the t test to test for differences between the two means.

The F test assumes that the underlying populations are normally distributed.
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Difference tests — nonparametric

How to rank data

Place the data in ascending numerical order. Assign them ranks, starting with rank 1 for the smallest datum. If
two or more data are tied for two or more ranks, assign the mean of those ranks to be each datum’s rank.

The Mann–Whitney U test for two independent samples

1. Call the smaller group ‘group 1’, and the larger group ‘group 2’, so n1 < n2. (If n1
 = n2, choose at random.)

2. Calculate the sum of the ranks of group 1 (= R1) and group 2 (= R2).

3. 
2

)1( 11
11

+−= nn
RU

4. 
2

)1( 22
22

+−= nn
RU

5. The Mann–Whitney statistic U is the smaller of U1 and U2.

As a check, verify that U1 + U2 = n1n2 and 
2

)1)(( 2121
21

+++=+ nnnn
RR . The null hypothesis is that the two

samples come from identical populations.

The Wilcoxon matched-pairs signed-rank test for two related samples

1. Calculate the difference score for each pair of samples.
2. Ignore any differences that are zero.
3. Rank the difference scores, ignoring their sign (+ or –).
4. Add up all the ranks for difference scores that were positive; call this T+.
5. Add up all the ranks for difference scores that were negative; call this T–.
6. The Wilcoxon matched-pairs statistic T is the smaller of T+ and T–.

As a check, verify that 
2

)1( +=+ −+ nn
TT . The null hypothesis is that the difference scores are symmetrically

distributed about zero.

The Wilcoxon signed-rank test for one sample

Calculate a difference score (x – M) for each score x, and proceed as above. The null hypothesis is that the scores
are symmetrically distributed with a median of M.

Chi-square (χ2) test

Regardless of the type of test,

∑ −
=

E

EO 2
2 )(χ  where O = observed value, E = expected value.

For a goodness-of-fit test (one categorical variable; the expected proportions in each category are known before-
hand) with c categories, there are c – 1 degrees of freedom.

For a contingency test (two categorical variables) with R rows and C columns, there are (R – 1)(C – 1) de-
grees of freedom, and the expected values are given by

n

CR
columnrowE ji

ji =),(

where Ri is the row total for row i, Cj is the column total for row j, and n is the total number of observations.
The χ2 test assumes equal independence of observations, normality (no values of E less than 5), and inclusion

of all observations (including non-occurrences).

Confidence intervals

Normal distribution; population mean (µ) and SD (σ) known

Confidence intervals = µ ± σ Zcritical. (For 95% confidence intervals, Zcritical = 1.96.)

Normal distribution; sample mean and SD known

Confidence intervals = dfncritical
X t
n

s
x )1( −± . (For 95% confidence intervals, use t for α = 0.05 two-tailed.)
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The standard normal distribution, Z = N(0,1)

Mean = 0. Standard deviation = 1 (i.e. one Z point = one SD).

Cumulative distribution function Φ(z) is the area under the
probability density function to the left of z (see figure).

This table gives the cumulative distribution function. “If I
know a Z score, what is the probability that a number ≤≤≤≤    z
comes from a standard normal distribution?”

If you have a Z score of 1.14, read down the left-hand side until you get to the row labelled ‘1.1’, then read across until
you get to the column labelled ‘0.04’. The number you reach is Φ(1.14). If you have a negative Z score, –z, calculate 1
– Φ(z). For example, the probability associated with a Z score of –1.91 is (1 – 0.9719) = 0.0281. If you want to know
the probability that a number > z comes from a standard normal distribution, it’s 1 minus the probability that a
number ≤≤≤≤    z comes from the distribution. The ‘significance level’ of a Z score is the probability that a number
equal to or more extreme than Z (≥≥≥≥ z if z is positive, ≤≤≤≤ z if z is negative) comes from this distribution.

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Source: Microsoft Excel 97 NORMSDIST function

Probabilities corresponding to a two-tailed α of 0.05, 0.01, and 0.001 are shown in bold. (These correspond to an α for
each tail of 0.025, 0.005, and 0.0005.)
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Spearman’s correlation coefficient for ranked data, rs

Here are the critical values of |rs| (the absolute magnitude of rs, ignoring any + or – sign) for different values of n and
α. If your value of |rs| is bigger than the critical value, you would reject the null hypothesis. (If the entry in the table is
blank, it is not possible to reject the null hypothesis.)

One-tailed α 0.05 0.025 0.01 0.005
Two-tailed α 0.10 0.05 0.02 0.01

n
1
2
3
4
5 0.900

6 0.829 0.886 0.943
7 0.714 0.786 0.893
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Source: Olds EG (1938), Annals of Mathematical Statistics 9. Note:
there is considerable variation in published tables of critical values of
|rs|, because computing them is very difficult and there are many tech-
niques for computing approximate values.

If n > 30, calculate a value of t instead:
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and test this using the tables of the t distribution with n – 2 degrees of freedom.
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The t distribution

There would not be space here to give a p value for every possible combination of a t score and a certain number of
degrees of freedom. So here are the critical values of t for different values of degrees of freedom and α. If your value of
t is bigger than the critical value, you would reject the null hypothesis. If you have a negative value of t, just drop the
minus sign (the t distribution is symmetrical about t = 0).

One-tailed α: 0.05 (0.025) 0.01 (0.005)
Two-tailed α: 0.1 0.05 (0.02) 0.01

df
1 6.314 12.706 31.821 63.656
2 2.920 4.303 6.965 9.925
3 2.353 3.182 4.541 5.841
4 2.132 2.776 3.747 4.604
5 2.015 2.571 3.365 4.032

6 1.943 2.447 3.143 3.707
7 1.895 2.365 2.998 3.499
8 1.860 2.306 2.896 3.355
9 1.833 2.262 2.821 3.250

10 1.812 2.228 2.764 3.169

11 1.796 2.201 2.718 3.106
12 1.782 2.179 2.681 3.055
13 1.771 2.160 2.650 3.012
14 1.761 2.145 2.624 2.977
15 1.753 2.131 2.602 2.947

16 1.746 2.120 2.583 2.921
17 1.740 2.110 2.567 2.898
18 1.734 2.101 2.552 2.878
19 1.729 2.093 2.539 2.861
20 1.725 2.086 2.528 2.845

21 1.721 2.080 2.518 2.831
22 1.717 2.074 2.508 2.819
23 1.714 2.069 2.500 2.807
24 1.711 2.064 2.492 2.797
25 1.708 2.060 2.485 2.787

26 1.706 2.056 2.479 2.779
27 1.703 2.052 2.473 2.771
28 1.701 2.048 2.467 2.763
29 1.699 2.045 2.462 2.756
30 1.697 2.042 2.457 2.750

# # # # #

∞ 1.645 1.960 2.326 2.576
Source: Microsoft Excel 97 TINV function, except for ∞ row (NORMSDIST function)

(Explanation of ‘∞’ entry: for ∞ df, critical values of t are the same as critical values of z, because the t distribution ap-
proaches a normal distribution as df → ∞.)
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The F distribution

There would not be space here to give a p value for every possible combination of a F score, a certain number of de-
grees of freedom (numerator and denominator), and α. So here are the critical values of F for different values of de-
grees of freedom and α. There are three tables, for three different levels of α. If your value of F is bigger than the criti-
cal value, you would reject the null hypothesis.

Critical values of F, α = 0.05 (one-tailed, e.g. for ANOVA), equivalent to α = 0.1 if used for a two-tailed test (‘having
put the bigger variance on top, are they different?’)

Numerator df
Denominator df 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 … 245.95 248.02 249.26 250.10 251.14 251.77
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 … 19.43 19.45 19.46 19.46 19.47 19.48
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 … 8.70 8.66 8.63 8.62 8.59 8.58
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 … 5.86 5.80 5.77 5.75 5.72 5.70
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 … 4.62 4.56 4.52 4.50 4.46 4.44
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 … 3.94 3.87 3.83 3.81 3.77 3.75
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 … 3.51 3.44 3.40 3.38 3.34 3.32
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 … 3.22 3.15 3.11 3.08 3.04 3.02
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 … 3.01 2.94 2.89 2.86 2.83 2.80

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 … 2.85 2.77 2.73 2.70 2.66 2.64
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 … 2.72 2.65 2.60 2.57 2.53 2.51
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 … 2.62 2.54 2.50 2.47 2.43 2.40
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 … 2.53 2.46 2.41 2.38 2.34 2.31
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 … 2.46 2.39 2.34 2.31 2.27 2.24
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 … 2.40 2.33 2.28 2.25 2.20 2.18
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 … 2.35 2.28 2.23 2.19 2.15 2.12
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 … 2.31 2.23 2.18 2.15 2.10 2.08
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 … 2.27 2.19 2.14 2.11 2.06 2.04
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 … 2.23 2.16 2.11 2.07 2.03 2.00
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 … 2.20 2.12 2.07 2.04 1.99 1.97
# # # # # # # # # # # # # # # # #

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 … 2.15 2.07 2.02 1.98 1.94 1.91
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 … 2.11 2.03 1.97 1.94 1.89 1.86
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 … 2.07 1.99 1.94 1.90 1.85 1.82
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 … 2.04 1.96 1.91 1.87 1.82 1.79
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 … 2.01 1.93 1.88 1.84 1.79 1.76
# # # # # # # # # # # # # # # # #

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 … 1.92 1.84 1.78 1.74 1.69 1.66
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 … 1.87 1.78 1.73 1.69 1.63 1.60
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 … 1.84 1.75 1.69 1.65 1.59 1.56

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 … 1.75 1.66 1.60 1.55 1.50 1.46
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 … 1.72 1.62 1.56 1.52 1.46 1.41
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 … 1.69 1.59 1.53 1.48 1.42 1.38

1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 … 1.68 1.58 1.52 1.47 1.41 1.36
Source: Microsoft Excel 97 FINV function
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Critical values of F, α = 0.025 (one-tailed, e.g. for ANOVA), equivalent to α = 0.05 if used for a two-tailed test
(‘having put the bigger variance on top, are they different?’)

Numerator df
Denominator df 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 647.79 799.48 864.15 899.60 921.83 937.11 948.20 956.64 963.28 968.63 … 984.87 993.08 998.09 1001.4 1005.6 1008.1
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 … 39.43 39.45 39.46 39.46 39.47 39.48
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 … 14.25 14.17 14.12 14.08 14.04 14.01
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 … 8.66 8.56 8.50 8.46 8.41 8.38
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 … 6.43 6.33 6.27 6.23 6.18 6.14
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 … 5.27 5.17 5.11 5.07 5.01 4.98
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 … 4.57 4.47 4.40 4.36 4.31 4.28
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 … 4.10 4.00 3.94 3.89 3.84 3.81
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 … 3.77 3.67 3.60 3.56 3.51 3.47

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 … 3.52 3.42 3.35 3.31 3.26 3.22
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 … 3.33 3.23 3.16 3.12 3.06 3.03
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 … 3.18 3.07 3.01 2.96 2.91 2.87
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 … 3.05 2.95 2.88 2.84 2.78 2.74
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 … 2.95 2.84 2.78 2.73 2.67 2.64
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 … 2.86 2.76 2.69 2.64 2.59 2.55
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 … 2.79 2.68 2.61 2.57 2.51 2.47
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 … 2.72 2.62 2.55 2.50 2.44 2.41
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 … 2.67 2.56 2.49 2.44 2.38 2.35
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 … 2.62 2.51 2.44 2.39 2.33 2.30
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 … 2.57 2.46 2.40 2.35 2.29 2.25
# # # # # # # # # # # # # # # # #

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 … 2.50 2.39 2.32 2.27 2.21 2.17
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 … 2.44 2.33 2.26 2.21 2.15 2.11
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 … 2.39 2.28 2.21 2.16 2.09 2.05
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 … 2.34 2.23 2.16 2.11 2.05 2.01
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 … 2.31 2.20 2.12 2.07 2.01 1.97
# # # # # # # # # # # # # # # # #

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 … 2.18 2.07 1.99 1.94 1.88 1.83
50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 … 2.11 1.99 1.92 1.87 1.80 1.75
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 … 2.06 1.94 1.87 1.82 1.74 1.70

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 … 1.94 1.82 1.75 1.69 1.61 1.56
200 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18 2.11 … 1.90 1.78 1.70 1.64 1.56 1.51
500 5.05 3.72 3.14 2.81 2.59 2.43 2.31 2.22 2.14 2.07 … 1.86 1.74 1.65 1.60 1.52 1.46

1000 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 … 1.85 1.72 1.64 1.58 1.50 1.45

Critical values of F, α = 0.01 (one-tailed, e.g. for ANOVA), equivalent to α = 0.02 if used for a two-tailed test (‘hav-
ing put the bigger variance on top, are they different?’)

Numerator df
Denominator df 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 4052.1 4999.3 5403.5 5624.2 5763.9 5858.9 5928.3 5980.9 6022.4 6055.9 … 6156.9 6208.6 6239.8 6260.3 6286.4 6302.2
2 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38 99.39 99.40 … 99.43 99.45 99.46 99.47 99.48 99.48
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 … 26.87 26.69 26.58 26.50 26.41 26.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 … 14.20 14.02 13.91 13.84 13.75 13.69
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 … 9.72 9.55 9.45 9.38 9.29 9.24
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 … 7.56 7.40 7.30 7.23 7.14 7.09
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 … 6.31 6.16 6.06 5.99 5.91 5.86
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 … 5.52 5.36 5.26 5.20 5.12 5.07
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 … 4.96 4.81 4.71 4.65 4.57 4.52

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 … 4.56 4.41 4.31 4.25 4.17 4.12
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 … 4.25 4.10 4.01 3.94 3.86 3.81
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 … 4.01 3.86 3.76 3.70 3.62 3.57
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 … 3.82 3.66 3.57 3.51 3.43 3.38
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 … 3.66 3.51 3.41 3.35 3.27 3.22
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 … 3.52 3.37 3.28 3.21 3.13 3.08
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 … 3.41 3.26 3.16 3.10 3.02 2.97
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 … 3.31 3.16 3.07 3.00 2.92 2.87
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 … 3.23 3.08 2.98 2.92 2.84 2.78
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 … 3.15 3.00 2.91 2.84 2.76 2.71
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 … 3.09 2.94 2.84 2.78 2.69 2.64
# # # # # # # # # # # # # # # # #

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 … 2.98 2.83 2.73 2.67 2.58 2.53
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 … 2.89 2.74 2.64 2.58 2.49 2.44
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 … 2.81 2.66 2.57 2.50 2.42 2.36
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 … 2.75 2.60 2.51 2.44 2.35 2.30
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 … 2.70 2.55 2.45 2.39 2.30 2.25
# # # # # # # # # # # # # # # # #

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 … 2.52 2.37 2.27 2.20 2.11 2.06
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 … 2.42 2.27 2.17 2.10 2.01 1.95
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 … 2.35 2.20 2.10 2.03 1.94 1.88

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 … 2.19 2.03 1.93 1.86 1.76 1.70
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 … 2.13 1.97 1.87 1.79 1.69 1.63
500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 … 2.07 1.92 1.81 1.74 1.63 1.57

1000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 … 2.06 1.90 1.79 1.72 1.61 1.54
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The Mann–Whitney U statistic

Here are the critical values of U for different values of n1 and n2. Only critical values for α = 0.05 (two-tailed) are
given. If your value of U is smaller than the critical value, you would reject the null hypothesis. (If the value shown in
the table is zero, it is not possible to reject the null hypothesis, since U cannot be smaller than zero.)

Critical values of U, α = 0.05 (two-tailed) or α = 0.025 (one-tailed)
n2

n1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3
3 0 0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9
4 1 2 3 4 5 5 6 7 8 9 10 11 12 12 13 14 15
5 3 4 6 7 8 9 10 12 13 14 15 16 18 19 20 21

6 6 7 9 11 12 14 15 17 18 20 22 23 25 26 28
7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
8 14 16 18 20 23 25 27 30 32 35 37 39 42
9 18 21 24 27 29 32 35 38 40 43 46 49
10 24 27 30 34 37 40 43 46 49 53 56

11 31 34 38 41 45 48 52 56 59 63
12 38 42 46 50 54 58 62 66 70
13 46 51 55 60 64 68 73 77
14 56 60 65 70 75 79 84
15 65 71 76 81 86 91

16 76 82 87 93 99
17 88 94 100 106
18 100 107 113
19 114 120
20 128

Source: R (http://www.r-project.org/), qwilcox(one-tailed α, n1, n2) gives q such that P(U < q) ≤ α.

If n2 > 20, use the normal approximation instead. Calculate a Z score
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and test this using the tables of the standard normal distribution Z.
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The Wilcoxon signed-rank T statistic

Here are the critical values of T for different values of n (where n is the number of non-zero difference scores) and α. If
your value of T is smaller than the critical value, you would reject the null hypothesis. (If the value shown in the table
is zero, it is not possible to reject the null hypothesis, since T cannot be smaller than zero.)

One-tailed α 0.05 0.025 0.01 0.005
Two-tailed α 0.10 0.05 0.02 0.01

n
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 1 0 0 0

6 3 1 0 0
7 4 3 1 0
8 6 4 2 1
9 9 6 4 2

10 11 9 6 4

11 14 11 8 6
12 18 14 10 8
13 22 18 13 10
14 26 22 16 13
15 31 26 20 16

16 36 30 24 20
17 42 35 28 24
18 48 41 33 28
19 54 47 38 33
20 61 53 44 38

21 68 59 50 43
22 76 66 56 49
23 84 74 63 55
24 92 82 70 62
25 101 90 77 69

Source: R (http://www.r-project.org/), qsignrank(one-tailed α, n) gives q such that P(T < q) ≤ α.

If n > 25, use the normal approximation instead. Calculate a Z score
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and test this using the tables of the standard normal distribution Z.
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The χ2 distribution

There would not be space here to give a p value for every possible combination of a χ2 score and a certain number of
degrees of freedom. So here are the critical values of χ2 for different values of degrees of freedom (k) and α. If your
value of χ2 is bigger than the critical value, you would reject the null hypothesis.

αααα
d.f. 0.05 0.01 0.001

1 3.84 6.63 10.83
2 5.99 9.21 13.82
3 7.81 11.34 16.27
4 9.49 13.28 18.47
5 11.07 15.09 20.51

6 12.59 16.81 22.46
7 14.07 18.48 24.32
8 15.51 20.09 26.12
9 16.92 21.67 27.88

10 18.31 23.21 29.59

11 19.68 24.73 31.26
12 21.03 26.22 32.91
13 22.36 27.69 34.53
14 23.68 29.14 36.12
15 25.00 30.58 37.70

16 26.30 32.00 39.25
17 27.59 33.41 40.79
18 28.87 34.81 42.31
19 30.14 36.19 43.82
20 31.41 37.57 45.31

21 32.67 38.93 46.80
22 33.92 40.29 48.27
23 35.17 41.64 49.73
24 36.42 42.98 51.18
25 37.65 44.31 52.62

26 38.89 45.64 54.05
27 40.11 46.96 55.48
28 41.34 48.28 56.89
29 42.56 49.59 58.30
30 43.77 50.89 59.70

# # # #

40 55.76 63.69 73.40
50 67.50 76.15 86.66
60 79.08 88.38 99.61
70 90.53 100.43 112.32
80 101.88 112.33 124.84

Source: Microsoft Excel 97 CHIINV function

(end of tables and formulae booklet)
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