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Reminder: basic principles



Reminder: the logic of null hypothesis testing

Research hypothesis (H1): e.g. measure weights of 50 joggers and 50 non-
joggers; research hypothesis might be ‘there is a difference between the weights
of joggers and non-joggers; the population mean of joggers is not the same as
the population mean of non-joggers’.

Usually very hard to calculate the probability of a research hypothesis
(sometimes because they’re poorly specified — for example, how big a
difference?).

Null hypothesis (H0): e.g. ‘there is no difference between the population
means of joggers and non-joggers; any observed differences are due to
chance.’

Calculate probability of finding the observed data (e.g. difference) if the
null hypothesis is true. This is the p value.

If p very small, reject null hypothesis (‘chance alone is not a good enough
explanation’). Otherwise, retain null hypothesis (Occam’s razor: chance is the
simplest explanation). Criterion level of p is called αααα.



True state of the world
Decision H0 true H0 false
Reject H0 Type I error

probability = α
Correct decision
probability = 1 – β = power

Do not reject H0 Correct decision
probability = 1 – α

Type II error
probability = β

Reminder: α, and errors we can make



Power: the probability of FINDING a GENUINE effect



Reminder: Z



Reminder: the distribution of Z (the standard normal distribution)
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Reminder: If we know µ and σ, we can test hypotheses about
single observations with a Z test

σ
µ−= x

z

Example: we know IQs are distributed with a mean (µ) of 100 and a standard
deviation (σ) of 15 in the healthy population. If we select a single person from
our population, what is the probability that he/she has an IQ of 60 or less?

Our tables will tell us that the probability of
finding a Z score less than +2.667 is 0.9962…

667.2
15

10060 −=−=
Therefore, this IQ is 2.667 standard
deviations below the mean.
How likely is that?

So the probability of finding a Z score less than
–2.667 is 1 – 0.9962 = 0.0038 (since the Z
curve is symmetrical about zero).

If our null hypothesis is that the person does
come from the healthy population, we might
reject the null hypothesis if p < 0.05 (as in this
example). This will happen whenever Z < –1.64.
This is an example of a critical value of Z.



Reminder: one- and two-tailed tests

We asked for the probability of finding an individual with an IQ of 60 or less in
the normal population. This tests the null hypothesis H0: ‘the individual comes
from the normal population with mean 100 and SD 15’. We calculate p, and
would reject H0 if p < α (where α is typically 0.05 by arbitrary convention).

This is a one-tailed test. If we do not reject the null hypothesis, it means that
the IQ is not significantly less than 100; it might be (a) not different from 100,
or (b) bigger than 100. If we want to reject the null hypothesis if the IQ is
bigger or smaller, we use a two-tailed test, and ‘allocate’ α/2 for testing each
tail to keep the overall Type I error rate at α. The critical values of Z will then
be slightly larger (–1.96 and +1.96, as it happens).



The t test



The ‘sampling distribution of the mean’

This lets us test hypotheses about groups of observations (samples). For a
given n, we can find out the probability of obtaining a particular sample mean.
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The Central Limit Theorem
Given a population with mean µ and variance σ2, from which we take samples of size n, the distribution

of sample means will have a mean µµ =x , a variance 
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As the sample size n increases, the distribution of the sample means will approach the normal
distribution.

Distribution of the population

(probability density function of rolls of a single die)



Example: we know IQs are distributed with a mean (µ) of 100 and a standard
deviation (σ) of 15 in the healthy population. Suppose we take a single sample
of 5 people and find their IQs are {140, 121, 95, 105, 91}. What is the
probability of obtaining data with this sample mean or greater from the
healthy population?
   Well, we can work out our sample mean:
   We know n:
   We know the mean of all sample means from this population:

   … and the standard deviation of all sample means:
   (often called the standard error of the mean)

So we can work out a Z score:

If we know the population SD, σ, we can test hypotheses
about samples with a Z test

Our tables will tell us that P(Z < 1.55) = 0.9394. So P(Z > 1.55) =
1 – 0.9394 = 0.061. We’d report p = 0.061 for our test.
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But normally, we don’t. So we have to use a t test.

n

s
x

s

x
t

n

xx
z

x

x

x

x

µµ

σ
µ

σ
µ

−=
−

=

−=
−

=
?

If we don’t know the population
SD, σ, and very often we don’t, we
can’t use this test.

Instead, we can calculate a number
using the sample SD (which we can
easily calculate) as an estimator of
the population SD (which we don’t
know). But this number, which we
call t, does NOT have the same
distribution as Z.



The distribution of t: “Student’s” (Gossett’s) t distribution

As is so often the case, beer made a statistical problem go away.

Student (Gossett, W.S.) (1908). The probable error of a mean. Biometrika 6: 1–25.



The distribution of t when H0 is true depends on the sample
size (which determines the ‘degrees of freedom’, or d.f.)

When d.f. = ∞, the t distribution (under H0) is the same as the normal distribution.



Degrees of freedom (df). (Few understand this well!)

Two statistics are drinking in a bar. One turns to the other and asks ‘So how are you
finding married life?’ The other replies ‘It’s okay, but you lose a degree of freedom.’
The first chuckles evilly. ‘You need a larger sample.’

Estimates of parameters can be based upon different amounts of information. The
number of independent pieces of information that go into the estimate of a parameter
is called the degrees of freedom (d.f. or df).

Or, the number of observations free to vary. (Example: 3 numbers and a mean.)

Or, the df is the number of measurements exceeding the amount absolutely necessary
to measure the ‘object’ (or parameter) in question. To measure the length of a rod
requires 1 measurement. If 10 measurements are taken, then the set of 10
measurements has 9 df.

In general, the df of an estimate is the number of independent scores that go into the
estimate minus the number of parameters estimated from those scores as intermediate
steps. For example, if the variance σ2 is estimated (by s2) from a random sample of n
independent scores, then the number of degrees of freedom is equal to the number of
independent scores (n) minus the number of parameters estimated as intermediate
steps (one, as µ is estimated by x) and is therefore n–1.
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Critical values of t (for a given number of d.f.)

When d.f. = ∞, the t distribution (under H0) is the same as the normal distribution.



The one-sample t test
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We’ve just seen the logic behind this. We calculate t according to this formula:

sample mean

standard error of the mean
(SEM) (standard deviation of the
distribution of sample means)

test value

sample SD

The null hypothesis is that the sample comes from a population with mean µ.

Look up the critical value of t (for a given α) using your tables of t for the
correct number of degrees of freedom (n – 1). If your |t| is bigger, it’s
significant.

df for this test

Degrees of freedom: we have n
observations and have calculated
one intermediate parameter (x,
which estimates µ in the
calculation of sX), so t has n – 1 df.



The one-sample t test: EXAMPLE (1)

It has been suggested that 15-year-olds should sleep 8 hours per
night. We measure sleep duration in 8 such teenagers and find that
they sleep {8.3, 5.4, 7.2, 8.1, 7.6, 6.2, 9.1, 7.3} hours per night.
Does their group mean differ from 8 hours per night?
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The one-sample t test: EXAMPLE (2)

It has been suggested that 15-year-olds should sleep 8 hours per
night. We measure sleep duration in 8 such teenagers and find that
they sleep {8.3, 5.4, 7.2, 8.1, 7.6, 6.2, 9.1, 7.3} hours per night.
Does their group mean differ from 8 hours per night?

Since our |t| is not as large as the critical value, we do not reject
the null hypothesis. Not ‘significant’; p > 0.05. We have not
established that, as a group, they sleep less than 8h per night.
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(use α = 0.05 two-tailed)



Paired and unpaired tests (related and unrelated data)

Now we’ll look at t tests with two samples. In general, two samples can be
related or unrelated.

• Related: e.g. measuring the same subject twice; measuring a large set of
twins; … any situation in which two measurements are more likely to
resemble each other than by chance alone within the ‘domain’ of interest.
• Unrelated: where no two measurements are related.

Example: measuring digit span on land and underwater. Could use either
• related (within-subjects) design: measure ten people on land; measure
same ten people underwater. ‘Good’ performers on land likely to be ‘good’
performers underwater; the two scores from the same subject are related.
• unrelated (between-subjects) design: measure ten people on land and
another ten people underwater.

If there is ‘relatedness’ in your data, your analysis must take account of it.
• This may give you more power (e.g. if the data is paired, a paired test has
more power than an unpaired test; unpaired test may give Type II error).
• beware pseudoreplication: e.g. measure one person ten times on land;
measure another person ten times underwater; pretend that n = 20. In fact,
n = 2, as repeated measurements of the same person do not add much more
information — they’re all likely to be similar. Get Type I errors.



The two-sample, paired t test
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Very simple. Calculate the differences between each pair of observations. Then
perform a one-sample t test on the differences, comparing them to zero. (Null
hypothesis: the mean difference is zero.)

test value for the
differences (zero
for the null
hypothesis ‘there
is no difference’)



The two-sample, paired t test: EXAMPLE (1)

Looking at high-frequency words only, does the rate of errors that you made
while categorizing homophones differ from the error rate when categorizing
non-homophone (control) words — i.e. is there a non-zero homophone effect?
(Each subject categorizes both homophones and control words, so we will use a
paired t test.)

Relevant difference scores are labelled % errors — homophone effect — high f
on your summary sheet. Mean = 3.1; standard deviation = 9.264; n = 97.
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test value for the
differences (zero
for the null
hypothesis ‘there
is no difference’,
as in this case)



The two-sample, paired t test: EXAMPLE (2)

Looking at high-frequency words only, does the rate of errors that you made
while categorizing homophones differ from the error rate when categorizing
non-homophone (control) words — i.e. is there a non-zero homophone effect?

Since our t is larger than the critical value, we reject the null hypothesis.
‘Significant’; p < 0.05. In fact, p < 0.01, since critical t for α = 0.01 and 96 df is
less than 2.75. You made more errors for homophones (p < 0.01 two-tailed).
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Confidence intervals using t









×±=

−=

−

−

n

s
tx

n

s
x

t

X
dfn

X
n

 1for  critical

1

µ

µ

97

264.9
1.3

96.1
µ−=±

If we know the mean and SD of a sample, we could perform a t test to see if it
differed from a given number. We could repeat that for every possible number...

For our homophone example: sample
mean = 3.1 (%), s = 9.264 (%). For n = 97
(df = 96), tcritical for α = 0.05 two-tailed is
approx. ±1.96. Therefore...

This means that there is a 95% chance
that the true population mean
homophone effect for high-frequency
words is between 1.26% and 4.94%.

Since

therefore

84.11.3  thereforeand ±=µ



Significance is not the same as effect size



The two-sample, unpaired t test
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How can we test the difference between two
independent samples? In other words, do
both samples come from underlying
populations with the same mean? (= Null
hypothesis.)

Basically, if the sample means are very far
apart, as measured by something that depends
(somehow) on the variability of the samples,
then we will reject the null hypothesis.

As always,

In this case,

(SED) means ebetween th difference  theoferror  standard

means ebetween th difference=t



The two-sample, unpaired t test

Don’t worry about how we calculate the SED (it’s in the handout if you’re
bizarrely keen). The format of the t test depends (unfortunately) on whether the two
samples have the same variance.

If the samples have the same variance:
• There’s one formula for t if the samples
are not the same size (n1 ≠ n2), and a
simpler formula if they are (n1 = n2).
• Formulae are on the Formula Sheet.
• We have n1+n2 observations and
estimated 2 parameters (the means, used to
calculate the two SDs), so we have n1 + n2

– 2 df.

If they do not:
• the number we calculate does not have
quite the same distribution as t.
• We calculate a number as before but
call the result t′.
• We then test our t′ as if it were a t
score, but with a different number of
degrees of freedom. Details on the
Formula Sheet.



The two-sample, unpaired t test — EXAMPLE

Silly example… In high-frequency word categorization where
those words are homophones, were there differences between
males and females?

% errors —
Females: n = 62; mean = 8.5; SD = 7.314
Males: n = 26; mean = 12.5; SD = 10.607
Null hypothesis: no difference between males and females.
Let’s use the unequal-variance form of the unpaired t test:
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Look this up as if it were a t score, but degrees of freedom = (n1 –
1) or (n2 – 1), whichever is smaller.



The two-sample, unpaired t test — EXAMPLE (2)

Silly example… In low-frequency word categorization where those words are
homophones (the hardest condition, judged by mean error rate), were there
differences between males and females? If we call females ‘group 1’ and
males ‘group 2’...

Caveat: some people were ignored because there wasn’t enough of your name
to judge your sex by it, or because I was incapable of predicting your sex from
your name. So these data may not be wholly accurate!

Not a significant difference.
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df: (n1 – 1) = 61 or (n2 – 1) = 25, whichever is smaller, i.e. 25

Critical t for 25 df (for α = 0.05 two-tailed) is 2.060



So how can we tell if the variances are ‘the same’ or ‘different’ — either to choose
the type of t test, or because we’re actually interested in differences in variability?

(a) We can look at them. It may be obvious.
(b) We can perform a statistical test to compare the two variances.

A popular test — not the best one, but a reasonable and easy one — is the F test.
F is the ratio of two variances. Since our tables will give us critical values for F >
1 (but not F < 1), we make sure F ≥ 1 by putting the bigger variance on top:

‘Are the variances equal or not?’ The F test
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Null hypothesis is that the variances are the same (F = 1). If our F exceeds the
critical F for the relevant number of df (note that there are separate df for the
numerator and the denominator), we reject the null hypothesis. Since we have
ensured that F ≥ 1, we run a one-tailed test on F — so double the stated one-
tailed α to get the two-tailed α for the question ‘are the variances different?’.



F test: homophone example

Example: classifying homophones (high-frequency words).
Were males more variable than females when classifying
homophones?

Males: n = 26, SD = 10.607
Females: n = 62, SD = 7.314
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From tables, critical F for 25,61 df (for α = 0.05 two-tailed)… well, we haven’t
got it exactly, but the closest (F25,60) is 1.87.

Our F is bigger, so we reject the null hypothesis. Males were significantly more
variable than females in this condition.

Put the biggest variance on top:



Assumptions of the t test

• The mean is meaningful.

If you compare the football shirt numbers worn by England strikers who’ve scored
more than 20 goals for their country with those worn by less successful strikers,
you might find that the successful strikers have a mean shirt number that’s 1.2
lower than the less successful strikers. So what?

• The underlying scores (for one-sample and unpaired t tests) or difference scores
(for paired t tests) are normally distributed.

Rule of thumb: if n > 30, you’re fine to assume this. If n > 15 and the data don’t
look too weird, it’s probably OK. Otherwise, bear this in mind.

• To use the equal-variance version of the unpaired two-sample t test, the two
samples must come from populations with equal variances (whether not n1 = n2).

(There’s a helpful clue to remember that one in the name of the test.) The t test is
fairly robust to violations of this assumption (gives a good estimate of the p value)
if n1 = n2, but not if n1 ≠ n2.



Parametric and non-parametric tests

The t test is a parametric test: it makes assumptions about parameters of the
underlying populations (such as the distribution — e.g. assuming that the data are
normally distributed). If these assumptions are violated:

(a) we can transform the data to fit the assumptions better
(NOT covered at Part 1B level)

or (b) we can use a nonparametric (‘distribution-free’) test that doesn’t
      make the same assumptions.

In general, if the assumptions of parametric tests are met, they are the most
powerful. If not, we may need to use nonparametric tests. They may, for example,
answer questions about medians rather than means. We’ll cover some next time.



A final thought and a technique



Reminder: multiple comparisons are potentially evil

Number of tests with
α = 0.05 per test

1
2
3
4
5

100

n

P(at least one Type I error if null hypothesis true)
= 1 – P(no Type I errors if null hypothesis true)

1 – (1 – 0.05) = 0.05
1 – (1 – 0.05)2 = 0.0975
1 – (1 – 0.05)3 = 0.1426
1 – (1 – 0.05)4 = 0.1855
1 – (1 – 0.05)5 = 0.2262

1 – (1 – 0.05)100 = 0.9941

1 – (1 – 0.05)n

(But remember, you can’t make a Type I error — saying something is
significant when it isn’t — at all unless the null hypothesis is actually true. So
these are all ‘maximum’ Type I error rates.)



Drawing and interpreting between- and within-subject effects




