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Statistics

Rudolf N. Cardinal

NST IB Psychology 2003–4
Practical 2 (Tue 2 & Wed 3 December 2003)

3. Difference tests — parametric tests

Objectives

We will go through the various types of tests for asking the question ‘is the mean of
this sample significantly different from… (something)’. We will then look at the t
test, a very popular ‘parametric’ test. This has various forms, depending on the kind
of data you want to analyse. We will look at nonparametric tests in Practical 4.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

3.1 Background

Reminders

We’ve already discussed the differences between one- and two-tailed tests (Hand-
out 1, One-tailed and two-tailed tests).

We’ve already talked about making multiple comparisons between groups (Hand-
out 1, The danger of running multiple significance tests).

Paired and unpaired tests (related and unrelated data)

When we come to look at the difference between two samples of data, the samples
can be related or unrelated. Suppose we want to compare the speed with which peo-
ple can rotate figures mentally in two conditions: on land and underwater. (1) We
could take a group of landlubbers and a group of divers, and compare them. There
would be no particular relationship between individual data points from the land
sample and the underwater sample. We would use statistical methods that are de-
scribed as unrelated, unpaired, or between-subjects. (2) Alternatively, we could
measure the same group of people in two conditions, on land and underwater. In this
situation, there is a relationship between one subject’s score on land and the same
subject’s score underwater — they are likely to be more similar than they would be
by chance alone, because they come from the same person. Our statistical methods
must reflect this fact; the techniques we would use are described as related, paired,
or within-subjects.

It is absolutely not acceptable to fail to take account of relationships between data
like this. A classic example of this sort of error is something called pseudoreplica-
tion. Suppose you test Alice, Bob, and Celia on land, and Eric, Frankie, and Greg
underwater. You obtain 6 observations, n = 3 for each group. Your groups are not
related. So far, so good. But suppose you want more than 6 observations; you might
measure each subject three times. This would give you observations A1, A2, A3,
B1… on land, and E1, E2, E3, D1… underwater. The error is to analyse this as if you
had 18 observations (n = 9 for each group). This is wrong, because A1, A2 and A3

are all related — more so than A1 and B1, or A1 and E1. We will not cover the ana-
lytical techniques required for this sort of situation, where we have multiple vari-
ables (in this case, land/underwater as a between-subjects variable, observation
1/observation 2/observation 3 as a within-subjects variable) — that’s covered in
the Part II course. If you have data like this, the simplest thing is to obtain some sort
of ‘overall’ score for each subject (e.g. take Alice’s overall score to be the mean of
A1, A2, and A3) and analyse those.

If you have data from only one subject, then you can consider the data to be ‘unre-
lated’ for the purposes of analysis, but your conclusions only apply to that subject.
For example, if you measured my ability to remember sequences of digits (my digit
span) ten times when I’m on dry land and ten times when I’m underwater, you could
treat the data as unrelated — they have no relationship to each other beyond the fact
that they come from the same subject, and that’s part of your analytical ‘context’
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anyway. You would have a sample (n = 10) of my dry-land digit span, and a sample
(n = 10) of my underwater digit span. If the dry-land scores were significantly
higher than the underwater scores, you could conclude that my digit span was better
on dry land than underwater — but this would tell you absolutely nothing about
people in general, because I might not be a representative person. You would only
know this by testing more people. (If you’re wondering, the rather foolish situation
in which you would need to deal with further ‘relatedness’ when you’re only testing
one subject might be something like this: you test me in a car on dry land, in a car
underwater, drunk on dry land, drunk underwater, tired on dry land, tired underwa-
ter… then to ask the ‘dry land versus underwater’ question, you would treat the ‘car’
pair of observations as related, the ‘drunk’ pair as related, and so on.)

Parametric and non-parametric tests

In the tests we’ll cover here, we analyse differences involving one or two samples
by making assumptions about the populations they come from. Remember the jar-
gon (Handout 1): we estimate parameters of populations by using statistics of sam-
ples. The tests we’ll cover in this handout make assumptions about the parameters of
the populations — for example, assuming that the underlying population is normally
distributed. They are therefore called parametric tests.

If the assumptions of a parametric test are not justified — if our data are a bit odd —
then we have two alternatives. (1) We can transform the data to make them fit the
assumptions better. We won’t cover this approach in the IB course, but it’s important
for ‘real-life’ data analysis. (2) We can use a test that does not make these assump-
tions about the distribution of the population — a nonparametric or distribution-
free test.

If a test’s assumptions are met, it should give an accurate value of p. We say that a
test is robust if it gives a good estimate of p even if we violate its assumptions. (We
may also say that it’s liberal if it underestimates p when certain assumptions are
violated — that is, says things are ‘significant’ more often than it should — or con-
servative if it does the opposite.)

In general, parametric tests have more power. If the assumptions of a parametric test
are met, it’s therefore better to use the parametric test. Many parametric tests are
also quite robust, so people don’t get too worried if the assumptions are not quite
met, but not grossly violated. Parametric tests can also be used for complex analyses
that can be quite hard to do with non-parametric tests. Transformations are a way of
‘rescuing’ the parametric test by making the data fit the test’s assumptions better;
this is why transformations are widely used. Non-parametric tests are sometimes
viewed as a bit of a last resort, because they have lower power. (On the other hand,
if you find a significant effect with a low-power test, you have no problem, and
some statisticians argue that non-parametric tests are a generally Good Thing,
though it’s probably fair to say that most researchers prefer parametric tests.) Occa-
sionally, if the data are ‘odd’, nonparametric tests have more power.

We’ll cover some non-parametric tests in Handout 4.

3.2 The one-sample t test

Overview

Suppose we have one group of n men and want to know if they are unusually tall.
We can measure their height, and ask the question ‘does the mean of this sample dif-
fer significantly from µ metres?’, where µ is the average height of our reference
population (all the men in the UK, perhaps). To do this, we define the null hypothe-
sis that the sample comes from a population with mean height µ metres. We calcu-
late the sample mean x  and the sample standard deviation sX. From this, we can cal-

culate the standard error of the mean, nss Xx /= . Then, we can calculate a t
statistic:
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This is called a t statistic with n – 1 degrees of freedom (df). We look up our t sta-
tistic in our tables to find a critical value of t for this many df and our desired level
of α. (If we want a two-tailed test with a level of α, we have to allocate α/2 to each
tail.) If our value of t is bigger than this critical value, we reject the null hypothesis.

Significant values of t can be big positive numbers or big negative numbers.
Non-significant values of t are close to zero.

The t test is always obtained by taking a number, subtracting from it a test value,
and dividing the result by the standard error of the number. We’ll see several dif-
ferent forms of the t test for different types of data (one sample, two samples, etc.),
but they all have the same general format.

Some people use the subscript on the t to refer to the number of degrees of freedom
(e.g. ‘t6 = 2.5, two-tailed p < 0.05’); others use it to denote critical values (‘for df = 6
and two-tailed α = 0.05, tα/2 = t0.025 = 2.447; our t = 2.5, so p < 0.05’). I prefer the
first of these, as you can probably tell.

How did we arrive at this? You don’t need to know, but if you’re interested, see
section 3.11 (Deriving the one-sample t test).

What is the standard error of the mean (SEM)?

Suppose we have a population with mean µ and variance σ2, and we repeatedly take
very many samples from it, with each sample containing n observations. We can say
some things about the samples that we take. For each sample, we can calculate a
sample mean x . So we can collect lots of different sample means — many values of
x . Now we can ask what might at first appear to be an odd question: what will be
the distribution of these sample means? The mean of all the sample means (the mean
of all the values of x ), written xµ , will be the same as the population mean, µ. The

standard deviation of all these sample means (the standard deviation of all the values
of x ), written xσ , is usually called the standard error of the mean (SEM). It’s a

measure of how much the value of the sample mean x  may vary from sample to
sample taken from the same population. It can be used to compare the observed
mean to a hypothesized value — as we saw above, it’s the basis of the t test. If we
know the population standard deviation σ and the sample size n, we can calculate the
SEM like this:

n
x

σσ =

If we don’t know σ, we can estimate the population SEM using the sample standard
deviation s:

n

s
sx =

3.3 The two-sample, paired t test

It’s very easy to extend the one-sample t test to two related groups. Suppose you
measure the heights of n girls when they’re 10, and then again when they’re 11, so
you have two measurements for each girl. These two measurements are clearly re-
lated (more so than two measurements for two different girls). We want to know if
our girls are growing normally. For each girl, we can therefore calculate the differ-
ence or difference score between the two related measurements — we just subtract
one from the other. We will obtain n difference scores (the amount that each girl has
grown). Suppose we know that the average girl grows 5 cm between the ages of 10
and 11 (µ  = 5). We can just run a t test on the difference scores, exactly as before:
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If our value of t exceeds the relevant critical value for n – 1 df and an appropriate α,
we reject the null hypothesis that our girls come from a normal-growing population.

The paired t test is used for related (or matched) samples. Two samples are related
whenever you can use one sample to make better-than-chance predictions of the
other. In this example, knowing one girl’s height aged 10 allows you to make a bet-
ter-than-chance prediction of the same girl’s height aged 11, but doesn’t allow you
to predict another 11-year-old girl’s height. In this example, the two samples come
from the same subject, but sometimes related samples don’t come from the same
subject. For example, if you ask different couples to rate their satisfaction about
their relationships, it is likely that if the man is very dissatisfied with the relation-
ship, the woman is too, so their scores would be related (but would not be related to
scores from a different couple).

Here’s an example: suppose the initial heights of the girls in cm are {125, 148, 132,
135, 139, 129} and after a year they are {129, 153, 135, 140, 148, 136}. The differ-
ence scores (age 11 minus age 10) are {4, 5, 3, 5, 9, 7}. The mean of this sample of
difference scores is x = 5.5; the sample SD is sX = 2.17; n = 5. We want to know if
our group differs from a population with mean µ = 5. We can calculate that t = (5.5
– 5) / (2.17 / √5) = 0.51. This t statistic has n – 1 = 4 df. For a two-tailed α = 0.05,
the critical value of t is 2.776. Our t is less than this, so we do not reject the null hy-
pothesis; the girls are growing normally.

3.4 The two-sample, unpaired t test, for equal sample variances

The essence of a two-sample t test. We have two samples
with means 1x  and 2x . If the distance (difference) be-

tween means ( 12 xx − ) is big enough, we say that the two

samples are significantly different (which is to say, the two
samples come from underlying populations whose means
are different). We measure the distance between the
means — somehow — in terms of the standard deviations
of the samples, s1 and s2.

Overview

If we have two independent (unrelated) groups, X1 and X2, with equal variances

( 2
2

2
1 ss = ), we can ask if they are significantly different from each other. The null

hypothesis is that the two underlying populations have the same mean (µ1 = µ2). We
can calculate a t statistic, which has the same general form as before: it’s the differ-
ence between means divided by the standard error of that difference, and this time
it has (n1 + n2 – 2) degrees of freedom.
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where 2
ps  (called the pooled variance) is given by
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If n1 = n2, then the formula is a bit simpler:
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This test assumes that the two samples come from populations with equal variances

( 2
2

2
1 σσ = ), whether or not n1 = n2. If this assumption is violated, we must use the

unequal variances version of this test (see below).

Example

Suppose we collect young horses and assign them to one of two groups at random.
We feed one group (n = 10) FastDope, a drug that we suspect of having perform-
ance-enhancing properties. The other group (n = 10) are given a placebo. They are
then timed running along a 1 km racetrack and their speed is calculated in m⋅s–1. The
null hypothesis is that the speeds of the drugged and undrugged groups do not differ.
We find that the speeds of the drugged group (group 1) are {12.2, 13.3, 12.6, 12.0,
11.6, 13.7, 13.6, 14.9, 13.0, 13.2} and the speeds of the placebo group (group 2) are
{12.1, 10.1, 12.3, 9.1, 9.7, 10.1, 8.6, 9.2, 13.4, 13.9}. Since n1 = n2, we can use the
simpler of the two formulae for t, and can therefore calculate
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For 19 df, the critical value of t for a two-tailed α = 0.05 is 2.093. Since our t statistic
exceeds this critical value, we reject the null hypothesis; the drugged group ran
faster.

How did we derive this t test? If you’re interested, see section 3.12…

3.5 The two-sample, unpaired t test, for unequal sample variances

If the two sample variances are not equal (heterogeneous variances), we have a bit
of a problem. First, the number we calculate will not have a t distribution, so if we
look it up using t tables we’ll get the wrong answer. Second, it makes no sense to

use 2
ps  in our formula (to ‘pool’ the variances of the two groups) since that proce-

dure also assumes equal variances (as explained in section 3.12 if you’re really in-
terested). But we can still run a t test, although we’ll lose a bit of power. We use our
simpler formula and call the result t′:

2

2
2

1

2
1

21

n

s

n

s

xx
t

+

−=′

We then test it just as if it were a t score, but with a different number of degrees of
freedom. If we’re doing it by hand,

degrees of freedom = (n1 – 1) or (n2 – 1), whichever is smaller.

If you have a computer, you can get a slightly better answer, which will lie some-
where between the hand-calculated version above and the original, uncorrected for-
mula (using df = n1 + n2 – 2). It’s called the Welch–Satterthwaite approximation (see
Howell, 1997, p. 197), and it’ll give us slightly more power. But you’ll be doing it
by hand in the exam and the W–S technique is too laborious to do by hand.

3.6 So are the variances equal or not?

If you want to know whether to use the equal variances or unequal variances ver-
sion of the two-sample unpaired t test, you obviously need to know whether your
population variances are equal or not, and the only way you can usually find that out
is to test whether your sample variances are equal or not. Actually, what we do is to
ask if our sample variances are significantly different from each other; if they are, we
use the ‘unequal variances’ t test; if they’re not, we use the ‘equal variances’ t test.
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There are several methods available for testing differences between variances.
Firstly, look at the data; it may be obvious. A good formal statistical test is
Levene’s test, provided by all good statistical packages, but it’s a bit too much work
to calculate by hand. Even the pen-and-paper version suggested by Howell (1997, p.
198) would take a lot of time in the exam. So we’ll use the F test. This may not be
the ‘best’ test (it has problems if the data are not quite normally distributed, though
if they are, it’s the most powerful at detecting differences in variances) but it’s quick
and good enough for our purposes — to decide whether the variances are too differ-
ent for the ‘equal variances’ version of the t test.

The F test

The F statistic is a ratio of two variances. If the two variances are equal, F = 1. If
they’re not, F ≠ 1. How much more/less than 1 does it need to be before we declare
the difference ‘significant’? We find that from tables of critical values of F. The F
distribution is based on two numbers for the degrees of freedom: one for the nu-
merator, and one for the denominator. We might write this as Fa,b where a is the
number of df for the numerator and b is the number of df for the denominator:
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In practice, tables of F don’t give critical values for F < 1; they only give critical
values for F > 1 (if you had F < 1, you could always take the reciprocal, 1/F, and
test that). So to make sure that our F > 1, we always put the biggest variance on the
top (numerator) of the ratio, and the smallest variance on the bottom (denominator).
So if the variances are different, the F statistic will be bigger than 1. In other words:

2
2

2
1

1,1 21 s

s
F nn =−−  if 2

2
2
1 ss >

2
1

2
2

1,1 12 s

s
F nn =−−  if 2

1
2
2 ss >

So you can run an F test on your data before choosing a t test; if it’s significant (es-
pecially if n1 ≠ n2), use the unequal variances t test; if it isn’t, use the equal variances
t test.

One more thing, though — if you want to test whether the variances are different
with α = 0.05 (two-tailed), you must run the F test itself with α = 0.025. If you run
the test with tabled values for α = 0.05 (one-tailed), your actual two-tailed α will be
0.1. Why? Well, asking whether the variances are different without specifying the
direction of the difference is a two-tailed test. The critical values of F, however, are
for a one-tailed test (because we only test significance when F > 1, rather than F <
1). You’ve forced it to become a two-tailed test by calculating F in such a way that
that F > 1; you must therefore double the stated one-tailed α to get the two-tailed α.

Relationship between the F test and the t test

The t test is actually a special case of the F test:
2

,1 kk tF =  and kk Ft ,1=
where k is the number of degrees of freedom. In other words, a t test on k df is di-
rectly equivalent to an F test on 1 and k df. The difference that the t distribution is
symmetrical about zero, since it deals with the differences between things, so values
of t can be positive or negative. The F test deals with squared values, which are al-
ways positive, so F ratios are always positive (see Keppel, 1991, p. 121).

3.7 Assumptions of the t test

For any t test:

• You’re testing hypotheses about the mean, which only makes sense if the mean
is meaningful (it may not be if the measurement scale you used wasn’t an inter-
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val or ratio scale — see Handout 1).
• The maths behind the t test assumes that the underlying populations of the

scores (or difference scores, for the paired t test) are normally distributed. If
this assumption is violated, you can’t use any form of t test. (Rule of thumb: if n
> 15 and the data don’t look too weird, it’s probably OK to use a t test; if n >
30, it should be fine.)

For two independent samples, to use the equal-variance t test, we assume

• The two samples come from populations with equal variances ( 2
2

2
1 σσ = ),

whether or not n1 = n2.

The t test is fairly robust to violations of this assumption if n1 = n2, but not if n1 ≠ n2.

3.8 Graphical representation of between- and within-subject changes

‘Error bars’ (or ‘mean ± variation’) — the SEM is commonly used

The SEM is frequently used when people publish data. They may quote a measure-
ment of ‘25.4 ± 1.2 g’, or display a datum on a graph with a value of 25.4 units and
error bars that are each 1.2 units long. These ‘variation’ indices could be one of sev-
eral things — mean ± SD, mean ± 95% CI, mean ± SEM… The paper should state
somewhere which one is being used, but usually it’s the SEM. Why? First, it’s
smaller than the SD, so it conveys an impression of improved precision (remember
that accuracy is how close a measurement is to a ‘true’ value and precision is how
well it is defined; thus, 2.5000000003 × 108 m⋅s–1 is a more precise but far less accu-

Graphical presentation and interpretation of between- and within-subject changes.
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rate measurement of the speed of light than 3.0 × 108 m⋅s–1). In fact, using the SEM
is perfectly fair and correct: the precision of an estimator is generally measured by
the standard error of its sampling distribution (Winer, 1971, p. 7). Secondly — more
importantly — if the SEM error bars of two groups overlap, it’s very unlikely that
the two groups are significantly different. (This is explained somewhat in the fig-
ure.) The opposite isn’t necessarily true, though — just because two sets of error
bars don’t overlap doesn’t mean they are significantly different (they have to
‘not overlap’ by a certain amount, and that depends on the sample size, and  so on).

Within-subjects comparisons and the SED

For within-subjects comparisons, SEMs calculated for each condition are highly
misleading (see figure). For this comparison — indeed, for any comparison — the
SED is an appropriate index of comparison, because that’s what the t test is based on
(t = difference between means / SED). So if the difference between two means is
greater than twice the SED, t > 2. And for a healthy n, t > 2 is significant at the
two-tailed α = 0.05 level (have a quick glance at your tables of critical values of t).

The SED is therefore a very good index of variation that can be used to make visual
comparisons directly, particularly if you draw error bars that are 2SED long — if the
means to be compared are further apart than the length of this bar, there’s a good
chance the difference is significant. However, it’s a bit more work to calculate the
SED, which is why you don’t see it very often.

If you want to work out an SED, just choose the appropriate t test and calculate the
denominator of the t test. For between-group comparisons where the group SEMs
are SEM1 and SEM2, you’ll see that SED = √(SEM1

2 + SEM2
2).

To summarize, for within-subject changes:
1. The mean within-subject change equals the difference of the group means.
2. The variance of the within-subject change may differ greatly from the variance

of any one condition (group).
3. Present within-subject changes when the baseline varies a lot, or you want to

show variance of the within-subject measure.
4. Present group means when the baseline matters.

3.9 Confidence intervals

One sample — confidence intervals on the population mean, µ

We can use the t formula to establish confidence intervals for particular measure-
ments. Suppose when we measured the heights of a group of n = 10 UK men and
found x = 1.82 m, s = 0.08 m. We could calculate the 95% confidence interval like
this. Since

n

s
x

t
X

n
µ−

=−1

we can work out 95% critical values for t (i.e. α = 0.025 each tail) with n – 1 = 9 df.
From our tables, these critical values are ±2.262. We can plug these into the formula
above to find an expression for µ as a 95% confidence interval:

10

08.0
82.1

262.2
µ−

=±

06.082.1 ±=µ
What would this mean? That there is a 95% chance that the true mean height of
UK men is in the range 1.76 to 1.88 m. We could also write this as a general for-
mula:

n

s
tx X

dfncritical )1( −±=µ



9

Two samples — confidence intervals on a difference between means, µ1 – µ2

Similarly, if we have two samples whose mean difference is 21 xx − , we can use the

formula for a two-sample t test to find the interval within which there is a 95%
chance of finding the underlying population difference, µ1 – µ2.

3.10 Power and things that affect it

We won’t talk about power in any great detail; certainly, you’re not expected to cal-
culate power. But it is helpful to understand what power is. Remember (from Hand-
out 1) that α is the probability of rejecting the null hypothesis H0 when it is in fact
true (a Type I error); β is the probability of not rejecting H0 when it is in fact false (a
Type II error); power is (1 – β), or the probability of rejecting H0 when it is in fact
false. If your power is 0.8, it means that you will detect ‘genuine’ effects with p =
0.8.

The consequences of Type II errors can be just as serious as those of Type I errors.
If you run an expensive experiment with a very low power, you have a very small
chance of finding the effect that you’re looking for even if it does exist; if you then
don’t find it, you’ve probably wasted your time and money. (If you ever plan to run
a seriously expensive experiment, make sure you understand how to do power cal-
culations to work out how big your sample size should be, or ask a statistician to do
it for you!)

Several things affect power: the size of the effect you’re looking for (the difference
between µ0 and µ1 — bigger effects give higher power), the sample size (n — the
more observations you have, the higher the power), the variance of the sample (σ2 —
smaller variances give higher power), and of course your chosen level of α (higher α
means lower β and therefore higher power, although higher α increases the chance of
a Type I error). Have a look at the piccie (below).

Factors affecting power. If H0 is true, and we take a set of samples each with mean x , the mean of all the values of x
will be µ0. If H1 is true, the mean of x  will be µ1. The distribution of all the values of x  — the so-called ‘sampling dis-
tribution of the mean’ will be the curve labelled H0 (if H0 is true) or H1 (if H1 is true instead). The area under each
curve is 1. Our job is to try to distinguish whether H0 or H1 is true on the basis of a single sample mean x . We do this
by setting α, the proportion of times that we reject H0 when it is true. Setting α creates a criterion and thereby deter-
mines β, the chance of rejecting H1 when it is true. In turn, this determines power, since this is 1 – β (the rest of the area
under the H1 curve). However, things other than α also affect power (middle and right-hand figures).

One thing that you should remember from this is that significance levels do not in-
dicate effect size. Extremely large samples have power to detect very small effects
with very small p values. Suppose a carefully-controlled study of a million people
finds that running two miles a day decreases the risk of puffy ankles by 1% (p <
0.001). This is a study with high power finding a small effect that probably isn’t im-
portant. On the other hand, absence of evidence is not evidence of absence — un-
derpowered studies may fail to find large effects. A study of twenty 50-year-old men
with heart disease might find no evidence that aspirin decreases the risk of a heart
attack over the next five years (p > 0.1). This is a study with very low power failing
to detect quite a substantial and important effect (aspirin does indeed reduce this
risk).
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3.11 Supplementary material: deriving the one-sample t test

The sampling distribution of the mean and the central limit theorem

Suppose we have a population with mean µ and variance σ2. If we repeatedly take
samples of n observations, we can say some things about the samples that we take.
For each sample, we can calculate a sample mean x . So we can collect lots of dif-
ferent sample means — many values of x . Now we can ask what might at first ap-
pear to be an odd question: what will be the distribution of the sample means (also
known as the sampling distribution of the mean)? What will be the mean of all the
sample means (the mean of all the values of x , written xµ )? What will be the stan-

dard deviation of all these sample means (the standard deviation of all the values of
x , written xσ )? What we need to know is contained in a fact called the central
limit theorem. There are various ways of stating this. The simplest is that if W1, W2,
… Wn are independent, identically distributed random variables and Y = W1 + W2 +
… + Wn, then the probability density function of Y approaches the normal distribu-
tion as n → ∞. (This explains why the normal distribution so closely approximates
so many biological, sociological, economic, and other variables that are themselves
the sum of the effects of many other variables.) A more thorough version of the
central limit theorem applicable to our present needs is this:

Given a population with mean µ and variance σ2, from which we take sam-
ples of size n, the distribution of sample means will have a mean µµ =x , a

variance 
nx

2
2 σσ = , and a standard deviation 

n
x

σσ = . As the sample size n

increases, the distribution of the sample means will approach the normal dis-
tribution.

This is very important. It doesn’t matter whether or not the population is normally
distributed; if you sample from it, the distribution of the sample means always ap-
proaches the normal distribution. (If the population is normally distributed and uni-
modal, the sample means will be normally distributed even if n is small; if the
population is very skewed, n may have to be quite large — e.g. >30 — before the
distribution of the means starts to become normally distributed.)

If we know the population SD, σ, we can test hypotheses very simply with a Z test

It’s unusual for us to know the population standard deviation, σ. But sometimes we
do. For example, we know that IQ in the general population has a mean of 100 and a
standard deviation of 15. In this case, we saw in the Background Knowledge hand-
out that we could calculate the probability that a single individual with an IQ of 89
came from the general population. We could calculate a Z score:

σ
µ−= x

z

which in this case would be z = (83 – 100)/15 = –1.13; we could look this up in our
tables and find that the probability that a single IQ score of 83 or less could come
from the general population is 0.129. We would not reject the null hypothesis that
this subject was drawn from the general population.

But suppose that we have five subjects, and their IQs are 89, 94, 73, 82, and 77. Are
these five subjects drawn from a healthy population (mean 100, SD 15)? The null
hypothesis is that they are (null hypothesis: population mean µ = 100). So what we
do is this. We calculate our sample mean x  = 83 and sample size n = 5. We know
from the central limit theorem that if we repeatedly took samples of size 5 from a
population with µ = 100 and σ = 15, that these sample means ( x ) themselves would
have a mean of xµ  = 100 and a standard deviation xσ = 15/√5 = 6.71. We also

know from the central limit theorem that the distribution of the sample means ( x )
approaches a normal distribution. So we could obtain a Z score again:
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53.2
71.6

10083 −=−=
−

=
−

=

n

xx
z x

x

x

σ
µ

σ
µ

Using our tables of Z scores, we’d find that the probability of obtaining a Z score of
–2.53 or more extreme is 0.0057. If we set our α to be 0.05 with a two-tailed test (α
= 0.025 each tail), we’d reject the null hypothesis, and conclude that our group of
five subjects were not drawn from the general healthy population; the group mean of
83 was significantly different from 100. (It should be fairly obvious that our likeli-
hood of finding a significant difference depends on the sample size n; larger samples
have more power to detect a significant difference.)

More often, we do not know the population SD, σ, and can’t use a Z test…

It’s much more common that we don’t know the population SD, σ, or the population
variance, σ2, so we have to estimate it from the sample SD, s, or the sample variance,
s2. Unfortunately, this complicates matters a bit. Although in the long run, the aver-
age value of the sample variance s2 is equal to σ2 (it’s an unbiased estimator; see the
Background Knowledge handout if you’re interested), the distribution of s2 is posi-
tively skewed. That means that although the average value of s2 equals σ2, more than
half the values of s2 are less than σ2 (and less than half are more than σ2 — though
the values that are more than σ2 are much more than σ2, to balance things out). So
any individual value of s2 is likely to underestimate σ2.

What we have to do to compensate is to change test from a Z test to something
called a t test. Instead of calculating a Z score based on σ:

n

x

n

xx
z

x

x

2σ

µ
σ

µ
σ

µ −=−=
−

=

we calculate a t score based on s:

n

s

x

n

s
x

s

x
t

x

x

2

µµµ −=−=
−

=

Since s2 is more likely than not to be smaller than σ2, t is more likely than not to be
bigger than z. The t score is not normally distributed; it has its own distribution. This
distribution was worked out by William Gossett in 1908. Gossett worked for Guin-
ness and they wouldn’t let him publish under his own name, so he published under
the pseudonym of Student. The distribution is therefore called Student’s t distribu-
tion. There are in fact infinitely many t distributions, one for each degree of freedom
(df; see below). For a one-sample t test, the number of degrees of freedom is n – 1,
where n is the number of observations in the sample. As n → ∞, df → ∞, the distri-
bution of s2 becomes less and less skewed, and the t distribution becomes more and
more like the normal distribution, Z. Anyway, we don’t routinely need to calculate
the distribution of t because we have it in the form of pre-calculated tables. If our
calculated value of t exceeds the relevant critical value for the appropriate number of
degrees of freedom and α, we reject the null hypothesis.

Degrees of freedom (df)

When we begin, we have n observations, and all of them are free to vary. When we
obtained the sample variance, s2, we calculated the deviations of each observation
from the sample mean ( xx − ), rather than from the population mean (x – µ). Be-
cause the sum of the deviations about the mean, ∑ − )( xx , is always zero, only n – 1
of the deviations are free to vary. We’ve ‘used up’ one of our degrees of freedom by
calculating x  using data from our sample. So s2 is based on n – 1 degrees of free-
dom, and so is our t statistic.
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3.12 Supplementary material: deriving the two-sample t test

The distribution of differences between means; deriving the two-sample t test

When we want to compare two groups, what we do is take two samples from two
different populations, X1 and X2, and ask if the two populations have the same mean
(µ1 = µ2) or not (µ1 ≠ µ2). Suppose the populations have means µ1 and µ2 and vari-

ances 2
1σ  and 2

2σ . If we draw pairs of samples, of size n1 from population X1 and of

size n2 from population X2, we can calculate the difference between each pair of
sample means 1x  and 2x , or 21 xx − . If we draw many pairs of samples, we can

calculate the distribution of the differences between sample means, also called
the sampling distribution of differences between means. The mean difference be-
tween sample means will be given by

2121
µµµ −=−xx

From the central limit theorem, we know that the variance of sample means from X1

will be 
1

2
12

1 nx
σσ = , and similarly 

2

2
22

2 nx
σσ = . The variance sum law states that the

variance of a sum or difference of two variables is:

21
2
2

2
1

2 2
21

σρσσσσ ++=+ XX

21
2
2

2
1

2 2
21

σρσσσσ −+=− XX

where ρ is the correlation between them; therefore, for two independent variables (ρ
= 0), the variance of the sum or difference of the variables is the sum of their vari-

ances ( 2
2

2
1

2
21

σσσ +=± XX ). Therefore, the variance of the difference between our

two means will be

2

2
2

1

2
12

21 nnxx
σσσ +=−

so the corresponding standard deviation is

2

2

1

1

2

2
2

1

2
1

21 nnnnxx
σσσσσ +=+=−

This is called the standard error of the difference between means (SED). We
now know the mean and SD of the distribution of the differences between sample
means; all that’s left is to determine the shape of this distribution. Another theorem
tells us that the sum or difference of two independent normally-distributed variables
is itself normally distributed; we’re basically done. If we knew the population SDs
σ1 and σ2 — which is very unusual! — we could perform a Z test:

2

2
2

1

2
1

21212121 )()()()(

21

nn

xxxx
z

xx σσ

µµ
σ

µµ

+

−−−=−−−=
−

… but that’s very unlikely. So just as we used a t test in place of a Z test earlier,
when we had to estimate σ based on the sample SD, s, we’ll do the same now:

2

2
2

1

2
1

21212121 )()()()(

21

n

s

n

s

xx

s

xx
t

xx
+

−−−=−−−=
−

µµµµ

Generally, the null hypothesis is that the means are the same (µ1 – µ2 = 0), so we can
simplify this a bit:

2

2
2

1

2
1

2121 )()(

21

n

s

n

s

xx

s

xx
t

xx
+

−=−=
−

and there we have the formula that I stated at the top for when n1 = n2. What about
the degrees of freedom? Well, we started with n1 + n2 degrees of freedom. We’ve
calculated two sample variances, so we’ve lost 2 df; we’re left with (n1 + n2 – 2) df.
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Pooling variances when n1 ≠ n2

Actually, the use of the t test for two independent samples requires the assumption

that the two samples come from populations with equal variances ( 2
2

2
1 σσ = ). We

could denote this variance simply σ2. This is often a reasonable assumption, par-
ticularly if we start with two groups of equivalent subjects (⇒ equal variances) and
then do something to one or both groups that affects the mean of those groups; the
variances will often be relatively unaffected. Anyway, when we use the t test, we are

using the sample variances 2
1s  and 2

2s  to estimate σ2. If our sample sizes are not

equal (n1 ≠ n2), then the larger sample will probably give us a better estimate of σ2

(both 2
1s  and 2

2s  are meant to be estimating the same thing, since we’re assuming
2
2

2
1 σσ = , and the larger sample contains more information). Accordingly, we would

be better off with a weighted average, in which the sample variances are weighted
by their degrees of freedom (n – 1), the number of observations on which they are

based. This weighted average is usually called the pooled variance estimate, 2
ps :

2

)1()1(

21

2
22

2
112

−+
−+−=

nn

snsn
s p

If we use that in our t test, we get the general formula for the two-sample unpaired t
test that we began with:









+

−=

+

−=−=
−

−+

21

2

21

2

2

1

2

2121
2
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)(

21

21

nn
s

xx

n

s

n

s

xx

s

xx
t

p
ppxx

nn

It’s just the same as the first formula in that it involves dividing the difference be-
tween means by the standard error of the difference between means (SED). The only
difference is how we calculate the SED. If the sample sizes are equal (n1 = n2), then
the two formulae are equivalent.

Another way of thinking about the pooled variance is in terms of sums of squares;
we mentioned this in some of the wavy-line bits of Handout 2 (on what r2 means in
correlation). A variance is a ‘sum of squares’ (the sum of squared deviations from
the mean) divided by the degrees of freedom. So when we multiple each sample
variance by its own df we get the sample sums-of-squares. We also said that you
could only add sample variances meaningfully when they were based on the same
df, but you can add sums of squares any way you like — so to calculate the pooled
variances, we convert the sample variances to the sample sums-of-squares, add them
together, and divide by the overall number of df to get the overall (pooled) variance.
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