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Statistics

Rudolf N. Cardinal

NST IB Psychology 2003–4
Practical 1 (Tue 11 & Wed 12 November 2003)

2. Correlation and regression

Objectives

We’ll examine two ways to examine the relationship between two variables — cor-
relation and regression. They’re conceptually very similar.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

2.1 Scatter plots

Suppose you measure two things about a group of subjects — IQ and income, say.
How can we establish if there’s any relationship between the two? The first thing to
do is to draw a scatter plot of the two variables. To do this, we take one of our vari-
ables (e.g. IQ) as the x axis, and the other as the y axis. Each subject is then plotted
as one point, representing an {IQ, income} pair. This might show us any of several
things:

Fictional scatterplots. A: positive correlation between IQ and income. As IQ goes up, income goes up. B: negative cor-
relation between IQ and income. As IQ goes up, income goes down. C: no correlation between the two. D: there’s a
relationship, but it’s not a straight line (it’s not a linear relationship). People with high IQs and people with low IQs
both earn less than those with middling IQs.

It’s always worth plotting the data like this first. However, for our next trick we’d
like a statistical way to work out if there’s a relationship, how big it is, and in what
direction it goes. Please note that we’ll only talk about ways to establish things
about a linear relationship between two variables; if it’s non-linear (e.g. the bottom
right figure), it’s beyond the scope of this course.

2.2 Correlation

We will call the degree to which they are related the correlation between the two
variables. If Y gets bigger when X gets bigger, there’s a positive correlation; if Y
gets smaller when X gets bigger, there’s a negative correlation; if there’s no linear
relationship, there’s a zero correlation. Here’s how we work it out.
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The covariance

First, we need some sort of number that tells us how much our two variables vary
together. Let’s suppose we have n observations. Let’s call our two variables X and Y.
We first find the two means, x  and y . Then we can calculate something called the

sample covariance:
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Look at the first part of the equation first — it’s very like the sample variance (if we
changed all the ys to xs in this equation, we’d have sX; if we changed all the xs to ys,
we’d have sY). (And yes, if you’re wondering, if we wanted the population covari-
ance, we’d divide by n rather than n–1, but we don’t.)

Perhaps you can see from the equation how it works. For a given {x, y} point, if x is
very far above the x-mean ( x ), and y is very far above the y-mean ( y ), then a big

number gets added to our covariance. Similarly, if x is very far below the x-mean
( x ), and y is very far below the y-mean ( y ), then a big number gets added to our

covariance. Both these occurrences suggest a positive linear relationship (like the
top-left part of our figure). On the other hand, if x is very far above x , and y is very
far below y , then a large negative number gets added to our covariance; the same’s

true if x is very far below x  and y is very far above y . Points near the mean don’t

tell us so much about the relationship between x and y, and they don’t contribute
much to the covariance score. If there’s no relationship between X and Y, then when
x is above x , about half the time y will be above y  and the covariance will get big-

ger, but about half the time y will be below y  and the covariance will get smaller,

so the covariance ends up being about zero.

The Pearson product–moment correlation coefficient, r

The covariance tells us how much the two variables are related, but it has a problem
— the actual value of the covariance depends on the standard deviations of our two
variables as well as the correlation between them. A covariance of 140 might be an
high correlation if the standard deviations are small, but a poor correlation if the
standard deviations are large. We can get round this problem by calculating r:

YX

XY
XY ss

r
cov=

It turns out that r varies from –1 (perfect negative correlation), through 0 (no corre-
lation), to +1 (perfect positive correlation).

Incidentally, the correlations in our picture were +0.79 (figure A), –0.81 (figure B),
0.10 (figure C), –0.04 (figure D).

‘Zero correlation’ doesn’t imply ‘no relationship’

That should be immediately apparent: I’ve just told you that the correlation between
IQ and income in figure D was –0.04, nearly zero, and yet there’s clearly a very
strong relationship — it just isn’t a linear one. Always plot your data to avoid
drawing mistaken conclusions from r values.

Correlation does not imply causation

Finding that X and Y are related does not mean that X and Y are causally related.
It’s easy to jump to this assumption if the relationship is plausible — we might in-
tuitively think that clever people get better jobs, for example, and thus accept a
positive correlation between IQ as income as indicating causation. It doesn’t. Maybe
the causal relationship is backwards: having more money might improve your IQ.
Maybe the two are connected through a third variable: Z causes X and Z causes Y
(e.g. maybe having rich parents means you’re more likely to have a high IQ, and
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also makes you more likely to get a well-paid job as an adult). The point is, we just
can’t tell from the plain correlation.

Adjusted r

If we measured IQ and income for a sample of just two people — let’s say {IQ 110,
£20,000} and {IQ 120, £25,000} — and calculate r, we’ll find that there’s a perfect
correlation, +1. If you plot only two points on a scatterplot, you can always join
them perfectly with a straight line. This doesn’t mean that the correlation is +1 in the
population! So there’s something slightly wrong with our sample correlation statis-
tic, r — it’s a biased estimator of the population correlation, which we write as ρ
(Greek letter rho). We can to do something to make it a better (unbiased) estimator.
We can calculate the adjusted r, radj:
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If the sample size is large, r and radj will be about the same. Please note that doing
this will give you a positive value for radj, since square roots can’t be negative… so
you need to look at the original data or r value to work out which way (+ or –) the
correlation should be.

Beware if your correlation is based on a restricted range of data

It’s obvious that if we sample too few data points, we won’t get a very good esti-
mate of r for our population (that’s what calculating radj is meant to sort out). But it
should also be clear that if we sample from a restricted range, we can also get the
wrong answer, even if we sample many observations within that restricted range.
Here’s an extreme example (figures E–G below): depending on the range of data we
sample, we can contrive to find a negative, zero, or positive correlation between our
two variables.

Beware outliers

Above: Sampling a restricted range of data can overestimate r (E) or underestimate r (G) compared to sampling the
whole range (F). Black dots are part of the sample; white dots are part of the population that wasn’t sampled. The
straight line represents the correlation. Below: Outliers can have large effects on r. In (H) the outlier makes r nearly 0;
without it, r would be nearly 1. In (I), the outlier makes r nearly 1; without it, r would be nearly 0.
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Extreme values, or outliers, can have large effects on the correlation coefficient.
(We won’t talk about what to do with them in the IB course, but you should be
aware of the problems they can cause.) Two examples are shown in figures H–I.

Beware if your population has distinct subgroups

We can also encounter problems if our measurements aren’t from one homogeneous
population. A couple of examples are shown in figures J–K (but subgroup effects
can be a good deal more subtle than this!).

Fictional data illustrating problems with subgroups. (J) Correlation between height and weight for various things we
found in a magic forest. If we measure an overall correlation, we may find that tall things weigh less (negative correla-
tion between height and mass), but this is only because we have two very different subgroups. But we have heterogene-
ous subsamples — within each subgroup (wild boar and runner beans) there is a positive correlation. (K) A less stupid
example. If we are investigating whether something is carcinogenic, we might find a negative correlation, suggesting (if
we have designed our experiment so that we know that the chemical caused any observed change in cancer rate) that
the chemical protects from cancer. But we must check, because this could be due to a subgroup effect: a more detailed
analysis may reveal a vulnerable subgroup (who get high rates of cancer) and a resistant subgroup (who aren’t as
likely to get cancer); in this example, the rates of cancer are actually increased by the chemical in both subgroups.

2.3 Is a correlation ‘significant’?

Assumptions we must make

If all we want to do is to describe the sample that we have (e.g. with correlation
and/or regression), we don’t have to make any assumptions — although correlation
and regression both aim to describe a linear relationship between two variables, so
if the relationship isn’t linear, then the answers we get from correlation and regres-
sion won’t mean very much.

But if we want to perform statistical tests with the data (e.g. ‘is this correlation coef-
ficient significantly different from zero?’), we will effectively be asking questions to
do with the underlying population that our sample was drawn from (i.e. ‘what is the
chance that a sample with correlation r came from an underlying population with
correlation ρ = 0?’). This requires making some assumptions, or our statistical tests
won’t be meaningful. Basically, the data shouldn’t look too weird:

• The variance of Y should be roughly the same for all values of X. This is often
called homogeneity of variance; its opposite, what you don’t want, is called het-
eroscedasticity (Greek homo same, hetero other, skedastos able to be scattered).

Heteroscedasticity: a Bad
Thing. The variance in income
is very different for low-IQ and
high-IQ data.
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• If we are asking questions about ρ, we must assume that both X and Y are nor-
mally distributed.

• For all values of X, the corresponding values of Y should be normally distrib-
uted (and vice versa). [You may see the last two assumptions referred to to-
gether as the assumption of ‘bivariate normality’.]

Testing the ‘significance’ of r — is r significantly different from zero?

Let’s suppose we take a sample of people, measure their IQs and incomes, and cor-
relate them to find r. That’s the correlation in the sample; but is there a correlation in
the whole population? Our null hypothesis is that the population correlation coeffi-
cient (ρ) is zero. Without going into the details, we can compute a number called a t
statistic:
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We can use this number, t, to perform a t test with n–2 degrees of freedom. (The
statistical catchphrase is that the number we have just calculated is ‘distributed as t
with n–2 degrees of freedom’; the t distribution is much like the normal distribution
that we’ve mentioned before, so we need to look up the probability corresponding to
our t statistic just like we might look up a probability corresponding to a Z score.)
To interpret this using tables, we can look up the critical value of t for our particular
value of α and the number of degrees of freedom; if our t statistic is bigger than the
critical value, it’s ‘significant’ and we reject the null hypothesis that there’s no cor-
relation in our underlying population.

(Note that we use r, not radj, for this test.)

This is an example of a t test; we’ll cover these properly in Practical 2.

2.4 Spearman’s correlation coefficient for ranked data (rs)

If our X and Y data are both ranked (see below for how to rank data), we can cal-
culate the correlation coefficient r just as normal, except that we’ll call it rs (some-
times called Spearman’s rho). However, when we want to test the significance of rs,
we have a problem, because we cannot make our assumption that the data are nor-
mally distributed. Some argue that there are substantial problems inherent in com-
puting the significance of rs (see Howell, 1997, p. 290). Anyway, with these caveats,
what we’ll do is to look up critical values of rs if n ≤ 30, and if n > 30 we’ll calcu-
late t and test that, just as before:
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To answer the question ‘are these values in a particular order?’ you can correlate
the rank of the data with the rank of their position. For example, suppose you take
large spoonfuls of bran flakes from the top of a cereal packet, one by one, and find
the mean weight of individual bran flakes in each spoonful. These weights, in milli-
grams and in order, are 70, 84, 45, 50, 48, 40, 38, 40, 25, 30. If you want to establish
whether it’s true that big bran flakes come out of the packet first, you can correlate
the set of positional ranks {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with the corresponding ranks
of the data {9, 10, 6, 8, 7, 4.5, 3, 4.5, 1, 2} to get rs = –0.918 (p < .001).

How to rank data

Suppose we have ten measurements (e.g. test scores) and want to rank them. First,
place them in ascending numerical order:

5 8 9 12 12 15 16 16 16 17
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Then start assigning them ranks. When you come to a tie, give each value the mean
of the ranks they’re tied for — for example, the 12s are tied for ranks 4 and 5, so
they get the rank 4.5; the 16s are tied for ranks 7, 8, and 9, so they get the rank 8:

X: 5 8 9 12 12 15 16 16 16 17
rank: 1 2 3 4.5 4.5 6 8 8 8 10

2.5 Regression

We’ve used correlation to measure how much of a relationship there is between two
variables. We can use a related technique, regression, to establish exactly what that
relationship is — specifically, to make predictions about one variable using the
other. Suppose there’s a positive correlation between serum cholesterol in 50-year-
old men and their chance of having a heart attack in the next five years. If Mr
Blobby has a serum cholesterol twice that of Mr Slim, are his chances of having a
heart attack doubled? Increased by a factor of 1.5? Tripled? Let’s find out.

If we call our two variables X (cholesterol) and Y (chance of having a heart attack),
we can write an regression equation that describes the linear relationship between
X and Y. It’s just the equation of a straight line:

abXY +=ˆ

We call this the regression of Y on X, meaning that we’re predicting Y from X, not

the reverse. The Y with a ‘hat’ ( Ŷ ) just means ‘the predicted value of Y’. This is the
picture that this equation represents:

The regression equation and
what it means. You might also
see it written axyy += 0 , or

some other equivalent.

We could draw thousands of lines like this. So which one is the best fit to our data?

If we take a particular line abXY +=ˆ , then for each {x, y} point, we can calulate a
predicted value abxy +=ˆ . From this, we can calculate how wrong our prediction

was: the prediction error is yy ˆ− . This error is often called the residual, because

it’s what you have left after you’ve made your prediction. Since this will sometimes
be positive and sometimes be negative, we can square it to get rid of the +/– sign,

giving us the squared error: 2)ˆ( yy − . So we should aim to find a line that gives us

the minimum possible total prediction error, or sum squared error, ∑ − 2)ˆ( yy .

(This procedure is called least squares regression.) As it happens, this is when
xbya −=

2

cov
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X

Y

s

s
rb = if that’s easier with your calculator)

Note that regression is not a symmetrical process: the best-fit line for predicting Y
from X is probably not the same as the best-fit line for predicting X from Y (illus-
trated in the figure below). This is different from correlation, which doesn’t ‘care’
which way round X and Y are.

To save you the bother of doing this by hand, your calculator should give you A
and B (regression) and r (correlation) directly. Learn how to use it for the exam!
Typically, you put it into ‘statistics mode’ or ‘linear regression’ mode, clear the stats
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memory, then enter each data point as an {x, y} pair — then you can read out the an-
swers.

Plotting and interpreting the regression line

To plot the line, you just need any two {x, ŷ } pairs — though it helps if they’re far

apart, because this makes your line more accurate, and it’s often wise to plot a third
point somewhere in the middle to make sure it lies on the same line! The line will
also pass through the points {0, a} and { x , y }.

If you actually need to predict a y value from some x value — say your father’s got a
particular cholesterol level and you wanted to predict his risk of a heart attack —
then you can just use the regression equation directly. Beware of extrapolating be-
yond the original data, though. If you’ve based your regression equation on 50-
year-old men with a cholesterol level of 4–8 mM, they may be pretty useless at pre-
dicting heart attack risks in 50-year-old men with a cholesterol level of 12 mM, or
100-year-old men, or 50-year-old women. Within the range of your data, though,
you can also make statements like ‘for every 1 mM drop in cholesterol, one would
expect a 10% reduction in the risk of a heart attack’ (or whatever it is); this informa-
tion is based on the slope of the regression line.

Finally, remember that correlation and regression do not necessarily represent
causation (see above).

r2 as a measure of how good a correlation or regression is

So far, we’ve drawn a regression line. But how good it is at predicting Y from X de-
pends on how much of a relationship there is between Y and X — we could draw a

Residuals and lines of best fit. (A) What’s a residual? (B–D), which are LESS IMPORTANT, show why predicting Y
from X is different from predicting X from Y.
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regression line where Y was the chance of having a heart attack and X was shoe size,
but it wouldn’t be a very good one. How can we quantify ‘how good’ our best fit is?

r2 represents the proportion of the variability in Y that’s predictable from the
variability in X, or (equivalently) the proportion by which the error in your predic-
tion would be reduced if you used X as a predictor. Let’s say the correlation between
cholesterol levels and heart attack risk were ridiculously high, at r = 0.8; then 0.82 =
0.64 = 64% of the variability in the risk of heart attacks would be attributable to
variations in cholesterol. If r = 0.1, then 0.12 = 0.01 = 1% of the variability in the
risks of heart attacks would be attributable to differences in cholesterol levels.

Note, once again, that this doesn’t tell you anything about causality. If rainfall is
predictable from twinges in your gammy knee, that doesn’t necessarily mean that
twinges cause rain, or that rain causes twinges.

Two regressions with nearly identical equations ( XY 2ˆ = ) but different values of r2.

Mathematical statement of this property of r2

Let’s start by taking the worst-case scenario. If you knew nothing about your sub-
ject’s cholesterol level (X), how accurately could you predict his risk of a heart at-
tack (Y)? Your best guess would be the mean risk of a heart attack, y , and your er-

ror would be described in some way by the standard deviation of Y, Ys , or the vari-

ance 2
Ys . The variance, remember, is

1
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Now the bottom part of that, n – 1, is the number of degrees of freedom (df) our es-
timate of the variance was based on. (This was in the first handout — if you have n
numbers, and you use them to calculate the sample mean, y , then you can subse-

quently only alter n – 1 of the numbers freely without altering the mean. This is
called the number of degrees of freedom you have left — it is the number of inde-
pendent observations on which a given estimate is based.) The top part is the sum of
the squares of the deviations of Y from the mean of Y, which we shorten to the sum
of squares of Y (SSY). So we can write the variance as

df

SS
s Y

Y =2

Let’s now suppose that we do know our subject’s cholesterol. We have a whole set
of n observations with which to calculate a regression line, i.e. a and b. (Since we
calculate two numbers, we’re left with n – 2 degrees of freedom in our data.) But
now we can estimate our subject’s heart attack risk rather better, we hope — and the
error in doing so will be related to the residuals (error) of our regression’s predic-
tion. This thing is called the residual variance, or error variance:

df

SS

n

yy
s residual

residual =
−

∑ −=
2

)ˆ( 2
2
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and its square root, residuals  (sometimes written XYs ⋅  to show that Y has been pre-

dicted from X), is called the standard error of the estimate (it’s like a standard de-
viation — the square root of the variance of the errors is the standard deviation of
the errors, abbreviated to the standard error). Well, rather than work all this out by
hand, let’s use somebody else’s result:

222 1
2

1
)1( adjYYresidual rs

n
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Actually, it’s generally easiest to do the calculations in terms of the sums of squares,
not variances, because then we don’t have to worry about all these degree-of-
freedom corrections (r and radj and this n – 1, n – 2 business) — you can’t add two
variances together unless they’re based on the same number of degrees of freedom,
but you can add sums of squares together any way you like — and we find that

)1( 2rSSSS Yresidual −=

Y
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residualYY SSrSSSS += )( 2

In other words, the total variability in Y is made up of a component that’s related to

X ( residualYY SSSSrSS −=⋅ 2 , which we can also write as 
Y

SS ˆ , the variability in the

predicted value of Y) and a component that’s residual error (SSresidual). Translated to
our cholesterol example, people vary in their cholesterol levels (SSX), they vary in
their heart attack risk (SSY), a certain amount of the variability in their heart attack
risk is predictable from their cholesterol (

Y
SS ˆ ), and a certain amount of variability

is left over after you’ve made that prediction (SSresidual). Or,

residualYY SSSSS += ˆ

where

Y

Y

SS

SS
r

ˆ2 =

2.6 Advanced real-world topics

As with all the wavy-line sections, this section certainly isn’t intended to be learned!
It’s for use with real-world problems that you may encounter. You will not be tested
on any of this in the exam.

What’s ‘regression to the mean’?

Something related to regression, but quite interesting. It was discovered by Galton in
1886. He measured the heights of lots of families, and calculated the ‘mid-parent
height’ (the average of the mother’s and the father’s height) — call it X — and the
heights of their adult children — call it Y. He found that the average mid-parent
height was x  = 68.2 inches; so was the average height of the children ( y  = 68.2

inches). Now, consider those parents with a mid-parent height of 70–71 inches; the
mean height of their children was 69.5 inches — the height of these children (69.5)
was closer to the mean of all the children ( y  = 68.2) than the height of the parents

(70–71) was to the mean of all the parents ( x  = 68.2). But this wasn’t a genetic
phenomenon, it was a statistical phenomenon, and it worked backwards: if you took
children with a height of 70–71 inches, the mean mid-parent height of their parents
was 69.0 inches. This is called regression to the mean.

Why does it happen? Suppose we have the variables X and Y, with standard devia-
tions sX and sY, and the correlation between them is r. We’ve previously seen that

YX

XY
XY ss

r
cov=

and the regression slope b is
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X

Y
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So a change of one standard deviation in X is associated with a change of r standard
deviations in Y. And we know the regression line always goes through the point at
the means of both X and Y — that is, the point { x , y }. Therefore, unless there is

perfect correlation (r = 1), the predicted value of Y is always fewer standard devia-
tions from its mean than X is from its mean. Remember that predicting Y from X is
different from predicting X from Y, unless the two are perfectly correlated? This is
another way of saying the same thing.

Examples of regression to the mean (from Bland & Altman, 1994, BMJ 309: 780)

• If we are trying to treat high blood pressure, we might measure blood pressure
at time 1, then treated, and then measured again at time 2. We might see that
blood pressure goes down most in those who had the highest blood pressure at
time 1, and we might interpret this as an effect of the treatment. We’d be wrong;
this is regression to the mean. It would happen even if the treatment had no ef-
fect. The two sets of observations (time 1, time 2) will never be perfectly corre-
lated (because of measurement error and biological variation); r < 1. So if the
difference between our ‘high blood pressure’ subgroup and the whole popula-
tion was q at time 1, it will be rq at time 2 — i.e. the difference from the popu-
lation mean will have shrunk. We should have compared our treated group to a
randomized control group.

• In one study, people reported their own weight and had their weight measured
objectively. A regression was used to predict reported weight from measured
weight; the regression slope was less than 1. This might lead to you interpret
that very fat people underestimate their weight when they report it, and very
thin people overestimate it. But we’d never have expected perfect correlation.
All this might be is regression to the mean — and if we’d predicted measured
weight from reported weight, we’d also have a slope less than one, from which
we might have concluded the opposite: that very fat people overestimated their
weights and very thin people underestimated them.

• When scientific papers are submitted to journals, referees criticize them and
editors select the ‘best’ ones to publish on the basis of the referees’ reports. Be-
cause referees’ judgements always contain some error, they cannot be perfectly
correlated with any measure of the true quality of the paper. Therefore, because
of regression to the mean, the average quality of the papers that the editor ac-
cepts will be less than he thinks, and the average quality of those rejected will
be higher than he thinks.

Partial correlation — dealing with the effects of a third variable

Sometimes we are interested in the relationship between two variables and know
that a third variable is also influencing the situation. Imagine we examine the corre-
lation between IQ (X) and income (Y), and find it to be positive, but we suspect that
one reason that higher IQ predicts higher income is because people with higher IQs
are more likely to get into university, stay for higher degrees, and so on — and it’s
the degree that gets you the higher income, not your IQ itself. So is there any further
relationship between IQ and income once you’ve taken into account this effect of
studying for longer? One way of investigating this is to look at the correlation be-
tween IQ (X) and (say) number of years of study (Z), and the correlation between in-
come (Y) and number of years of study (Z). We can then calculate the partial cor-
relation between IQ (X) and income (Y) having taken account of the relationship of
each of these to number of years of study. We call this ‘partialling out’ the effects of
number of years of study. We term the partial correlation coefficient between X and
Y with the effects of Z partialled out rxy.z, and calculate it like this:
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Let’s use some fictional numbers to illustrate this: suppose that the correlation
between IQ and income is rxy = 0.6, the correlation between IQ and years of study is
rxz = 0.8, and the correlation between income and years of study is ryz = 0.7. Then the
correlation between IQ and income having partialled out the effect of years of study

would be only rxy.z = 0.09. This would mean that 2
.zxyr = 0.0081, so only 0.8% of the

variability in income is predictable from IQ once you’ve taken account of the num-

ber of years of study, even though 2
xyr = 0.36 = 36% of the variability in income is

predictable from IQ. This would suggest that nearly all the ability of IQ to predict
income was due to the fact that high IQs predict more years of study.

The point-biserial correlation (rpb) for a dichotomous variable

If we ask the question ‘is body weight correlated with sex?’, we have a bit of a
problem with assuming that ‘sex’ is normally distributed; it clearly isn’t. Body
weight probably is, but mammals are either male or female; the sex variable is di-
chotomous (Greek dikhotomos, from dikho-, in two; temnein, to cut).

No problem: simply assign two values to the dichotomous variable as you see fit —
e.g. male = 0, female = 1 (or male = 56, female = 98; it doesn’t matter at all). Then
calculate r as normal. Officially this r is called rpb, the point-biserial correlation co-
efficient, but you can treat it like any r, and test it for significance in the same way
(a t test on n – 2 df) as we saw before:
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You might think that asking ‘does weight vary with sex’ and calculating a correla-
tion is a bit daft here, and the more natural question is ‘do the sexes differ in body
weight?’ You’d be right, really, but it is actually the same question. Since it’s the
same question, there must be a simple relationship between rpb and the t statistic:

dft

t
rpb +

=
2

2
2

The use of this is that if you test the difference between two groups (e.g. male body
weights and female body weights) using a t test (which we’ll cover in Practical 2),
you can calculate r2, and therefore the proportion of the variability in body weight
explained by sex. And if you read the results of a t test in a research article, you can
interpret them in terms of r2 using this technique.

Correlations when the dichotomous variable is ‘artificial’…

The male/female dichotomy is natural; all subjects are either one or the other.
Sometimes a dichotomy is arbitrary, such as ‘pass/fail’ in an exam with a 60% pass
mark; this dichotomy classifies people who scored 59% and people who scored 1%
in the same category, but classifies people who scored 59% and people who scored
60% in different categories. If you have data like these and want to calculate a cor-
relation, you have to use a slightly different technique; this is described by Howell
(1997, p. 286).

Correlations with two dichotomous variables

If you want to calculate the correlation between two variables when both are di-
chotomous, again, you can do it. All you do is calculate r in the normal way; this
time, its special name is φ (phi). And it’s exactly equivalent to doing a χ2 test (which
we’ll cover in Practical 4). And there’s a relationship between the two:

n

2χφ =
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Why is this useful? Again, because r2 is a measure of the proportion in the variabil-
ity in one variable that’s explained by a variable — the practical significance of the
relationship — and therefore so is φ2. So if you see a χ2 test reported in an article,
you can calculate φ2 to see whether the relationship is important (large) as well as
significant; see Howell (1997, p. 285).

Is a regression slope (b) significantly different from zero?

We saw earlier how to test if a correlation (r) was significantly different from 0.
Since correlation and regression are much the same thing, we can also calculate the t
statistic from the regression parameter b (from abxy +=ˆ ) using a different fornula.

For this it helps to use the notation XYs ⋅  rather than residuals for the standard devia-

tion of the residuals left over when we have predicted Y from X. We would find that
the t statistic we’ve just worked out could also be found like this:

XY

X
n s

nsb
t

⋅
−

−⋅= 1
2

As before, this t statistic is distributed with n – 2 degrees of freedom (which is why
the subscript on the t is n – 2).

If we calculate two regressions, are they significantly different?

Suppose we calculate the relationship between smoking and life expectancy in males
and females. We’d probably find that the more you smoke, the shorter you live (b <
0). Let’s suppose we find that this relationship is stronger in males (e.g. bmale < bfemale

< 0), suggesting that males decrease their life expectancy more than females for a
given increment in the amount they smoke (though, of course, the regression by it-
self doesn’t tell you anything about causality). Is this difference between males and
females significant? If we have two variables X1 and X2 that both predict a third
variable Y, and two sample regression coefficients b1 and b2, then we can calculate a
t statistic (with n – 4 df) for the null hypothesis that the two underlying population
regression coefficients are the same:
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‘I have two values of r from different (independent) groups. Are they different?’

If we want to do the same with correlations rather than regressions (‘is the correla-
tion r1 between male smoking and male life expectancy significantly different from
the correlation r2 between female smoking and female life expectancy?’) we have to
use a slightly different test. We convert r to a related number r′ and work out a Z
score from those:

r

r
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Then we look up our value of z in a table of the standard normal distribution to get
our p value.

‘I have two values of r, but they are not independent; are they different?’

Suppose we measured the number of GCSE points acquired by a group of 16-year-
olds, then measure the number of A-Level points acquired by the same people aged
18, then measure their annual income when they are 30. We could calculate a corre-
lation between any two of these variables. We could also ask whether the correlation
between GCSE scores and income was better/worse than the correlation between A-
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Level scores and income. But these are clearly not independent correlations, because
they were all based on the same people, and so there will probably be a correlation
between GCSE scores and A-Level scores that we must take into account. If our
three correlations are rA, rB, and rC, and we want to know if the difference between
rA and rB is significant, then the null hypothesis is that rA and rB are the same, and we
can calculate a t statistic (with n – 3 df) like this:
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This is effectively a statistical test for partial correlations. The partial correlation co-
efficient will answer the question ‘what is the correlation between X and Y, taking
account of Z?’ This test will answer the question ‘is the correlation rxy significantly
different from the correlation rxz, taking into account the fact that these two correla-
tions are themselves related (non-independent)?’

 ‘Is my value of r different from (a particular value)?’

Suppose we have a sample with a correlation of r = 0.3, and we want to know if this
differs from a correlation of 0.5. The null hypothesis is that the sample r = 0.3 came
from a population with ρ = 0.5. We can calculate a Z score like this:
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If I calculate r, what are the confidence limits on ρ?

The expression for z above tells us that

3−
+′=′

n

z
rρ

so we can calculate confidence intervals from appropriate critical values of z for a
two-tailed α:
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If you want 95% confidence intervals, zα/2 would be 1.96. Once you’ve worked out
confidence intervals for ρ′, we can convert them back to ρ to get our final answer:
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I have a group of subjects and have worked out a correlation for each one. Is this
correlation significant for my whole group?

Stop and go back a stage. Suppose you have a group of 20 rats and you measure
their performance on a test of attention and, simultaneously, the levels of the neuro-
transmitter acetylcholine in parts of their brain. Is there a relationship between ace-
tylcholine and attentional performance? If you only make one measurement per rat,
the problem is easy; you have 20 measurements of two variables, and can correlate
them as usual. If you’ve made 100 measurements for each rat, the problem is harder.
What can you do?

• You must not lump all the measurements together to give 2000 different {x, y}
pairs — because these observations are definitely not equally independent, since
subsets of observations are likely to be related by virtue of having come from
the same rat.
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• To ask whether subjects with high levels of acetylcholine have high levels of
performance — a between-subjects question — you could take each rat’s mean
performance and mean acetylcholine and conduct a correlation as normal (n =
20). (And if you’d made 60 observations on some rats and 105 observations on
others, it wouldn’t matter, because you’d take the mean across all these sub-
jects. If you really felt that it was worth placing more weight on data from sub-
jects that you obtained measurements from, you could conduct a weighted
analysis, weighting for the number of observations per subject.)

If different rats have very different levels of acetylcholine, then we could end up
with something like our wild-boar-and-runner-bean effect — for example, you
might find a negative correlation across the group (rats with lots of acetylcholine do
worse than rats with less acetylcholine), even though if you looked for it, you might
find a positive correlation within each rat (when any given rat has what is a high
level of acetylcholine for that rat, it performs better). So…

• If we want to know whether changes in one variable (acetylcholine) are paral-
leled by changes in the other variable (performance) in the same subject, and
that this is consistent across subjects — a within-subjects question using data
from multiple subjects — we can estimate the relationship within subjects using
a very general technique, called general linear modelling. This particular way of
using a general linear model (GLM) is called multiple regression or analysis of
covariance (ANCOVA). The GLM technique will handle even more compli-
cated problems, such as when we have two groups of rats (a control group and
one that has had part of their brain destroyed) and we want to know whether the
relationship between acetylcholine and performance is different in the two
groups. We will not cover these advanced techniques in the IB course.

I want to predict a variable on the basis of many other variables, not just one.

Then you need multiple regression, which we’re not going to cover.

Correlation/regression in Excel — relevant functions (see Excel help for full details)

COVAR(…) Population covariance (i.e. divide-by-n formula). So to calculate r using this
number, you need to divide this by the product of the ‘population SDs’ of X
and Y, calculated using STDEVP(…) — or multiply COVAR(…) by n and then
divide it by n–1, before dividing the result by the product of the sample SDs,
calculated using STDEV(…).

CORREL(…) Calculates r.
RANK(…) Don’t use it — it gets the ranks wrong when there are ties.
Tools → Data Analysis → Covariance Calculates sample covariances (i.e. divide-by-n–1 formula).
Tools → Data Analysis → Correlation Calculates r.
Tools → Data Analysis → Regression Calculates r, a, b, p.

Bibliography

Howell, D. C. (1997). Statistical Methods for Psychology. Fourth edition, Wadsworth, Belmont, California.


