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1. Background knowledge

Objectives

In this handout I’'ll cover the background mathematical knowledge required for the
IB psychology course, and the background knowledge that will underpin the statis-
tics course. I'll also cover some basics of experimental design.

The problems we face are these. (1) People come to IB psychology with a huge
range of maths backgrounds — from GCSE Maths followed by NST |A Elementary
Maths for Biologists all the way up to A-Level Further Maths followed by NST 1A
Maths level ‘B’. The advanced mathematicians will find the statistics in IB psychol-
ogy awalk in the park or will have covered them aready. (2) Nobody normal thinks
statsis tremendously exciting; it’s merely atool for doing research. (3) Many people
think that statisticsis hard and/or obscure. So let’ s divide the essential from the rest:

Stuff with wavy borders, like this, is advanced or for interest only and may be
ignored. You will NOT be examined on it. Please DON'T get upset if it looks
difficult; in places, it is. You do NOT have to understand it. Although the wavy-
line stuff may improve your under standing if you are a mathematician, you can
under stand everything that you need to do good statistics and pass the exams
with flying colour s even if you ignor e the wavy-line stuff ENTIRELY.

Double-wavy stuff is harder than single-wavy.

Page 2 (‘Basic M athematics') covers material that isassumed for IB Psychology
in general (not just the statistics course). Wewon't reviseit in the practicals.

Statistics books

Y ou shouldn’t need a maths or statistics book for this course. Should you want one,
undoubtedly the best statistics book I’ ve come across is Howell (1997) [see Bibliog-
raphy for full reference]. It'll cover pretty much all the statistics you need for Part
IB and Part Il and isfairly easy to read — as stats books go. Another good book that
doesn’'t tell you how, but tells you why, is Abelson (1995).

Calculators and computers

For the exams: an excerpt from the University Reporter, 18 June 2003;

‘... 1n 2003-04 the only models of electronic calculators that candidates will be permitted to take into the examination room

will be as follows:
(a)... Natural Sciences Tripos, Parts 1A, 1B, 1, Il (General), and Il1;

For the above examinations candidates will be permitted to use only the standard University calculator CAS O fx 100D,

CASO fx 115 (any version) or CASIO fx 570 (any version except the fx 570MS). Each such calculator must be marked in the
approved fashion. Medical and veterinary students who have previously had a calculator of similar or inferior specification
marked as approved will be permitted to use this calculator in biological examinationsin Part Il of the Medical and Veteri-
nary Sciences Tripos and of the Natural Sciences Tripos.

Sandard University calculators CAS O fx 115W marked in the approved fashion will be on sale at the beginning of Full
Michaelmas Term 2003 at £10 each at the institutions shown below. The replacement model, the 115MS will be on sale at
£12 each. Once stocks of the 115W are exhausted only the 115MSwill be available.

Department of Chemistry, Part 1A laboratory preparation room (for the Natural Sciences Tripos); ...

Board of Examinations Office (for any subject), 10 Peas Hill, Tuesday, 7 October and Wednesday, 8 October from

9.30 am. to 12.30 p.m. and from 2.30 p.m. to 4.30 p.m.
Candidates are strongly advised to purchase calculators at the beginning of Full Michaelmas Term at the centres named
above. At other times calculators may be purchased from the institutions named above, and also from the Department of
Physics. Candidates already possessing a CAS O fx 100D, CAS O fx 115 (any version) or CAS O fx 570 (any version except
the fx 570MS) will be able to have it marked appropriately at no cost at one of the above centres.’



1.1 Basic mathematics

If any of this (apart from the stuff in wavy lines) causes you problems, because for
some reason you haven't done NST |A Elementary Maths, you should speak to your
Director of Studies about catching up to this level. Some of it isn’t used in the stats
course but is common in psychology (e.g. logarithms are used in psychophysics).

Fractions, percentages
S _50=005
100

Notation to be familiar with

Ax A small changein x (pronounced ‘delta-x’).
z x Thesumof x (i.e. add up all the xsthat you have).

n A more precise way of specifying summation: this
in means ‘for every value of i from 1 to n take
=1 thesum of X, or ‘Xg + Xp + Xg + ... + X .
<<,<,5,=,2,>,>>  Much less than, less than, less than or equal to, equal
to, greater than or equa to, greater than, much
greater than.
#=,%=Doesnot equal, approximately equals, approximately
equals, is equivalent/identical to
=,&, < Implies, isimplied by, implies and isimplied by
o< |Isproportional to
oo Infinity

Powers (a summary) — though nothing beyond x? and v« used in |B statistics

W01 ) xij = X3P
x2 = x-X X 1 X b b
. L 1 x3 =3x (x*)° =x (
X7 =X-X-X X =— 1 a
X 2 a
XnEX'X"'Xn N 1 XnEQ/; XbEbXa (
X =— _a
X" Wb = 1
b Xa
Logarithms (a summary) — though not needed for 1B statistics
log,b=ceb=2a°
. log, xy =| | log, b=
|ng(xn)5n 00, Xy =109, X+109, Y |Ogba
Ioga(ﬁJslogax—logay Iogax;og—bx
log;o (X) =19(x) y log, a

loge(X) = In(X) log, X* = ylog, x log, x=log, x-log, b
e=2.718281828

Calculus

If f(x) is some function of x, then the function giving the gradient of f(x) is the first

derivative of f(x) with respect to x, written variously f’(x) = f :di f(x). If f(X) is
X

some function of x, then the area under the curve of f(x) is given by the integral of

f(X) with respect to x, written I f (X)dx . Thisis called theindefinite integral, because

it doesn't specify which parts of the curve we want the area under. The area under

the curve f(x) from x = a to X = b is given by the definite integral ‘[:f (x)dx .



1.2 Basic terminology

Variables and measurement

When we measure something that can vary, it is termed a variable. We can distin-
guish between discrete variables, which can only take certain values (e.g. in mam-
mals, sex is a discrete variable which can take one of the two values male and fe-
male), and continuous variables, which can take any value (such as height).

We can aso distinguish between quantitative data and frequency data (also called
categorical or qualitative data). Height is measured (quantified), and is therefore
quantitative. If we count the number of males and females in the room, each person
fallsinto one category or the other, and the data we end up with are frequencies (e.g.
there are 26 males and 29 females).

While we're at it, we can aso distinguish several types of measurement scale.
Nominal scales aren't really ‘scales at al, they’re categories (e.g. male/female,
Labour/Conservative/Lib Dem). The categories are different, but the nature of their
difference isn't relevant. Ordinal scales rank things, but do not specify how ‘far
apart’ they are on a scale. For example, in the Army a lieutenant ranks lower than a
captain, who ranks lower than a major; however, it doesn't make sense to ask
whether a major is more or less above a captain than a captain is above a lieutenant.
Interval scales have meaningful differences; 10°C is as far above —10°C as 40°C is
above 20°C. However, interval scales do not have a meaningful zero point (0°C is
not the ‘absence’ of temperature), so we can’'t say that 40°C is ‘twice as hot' as
20°C. Ratio scales have atrue zero point. 40 K istwice as hot as 20 K (because 0 K
isthe absence of heat); 3 mistwiceasfar as1.5 m.

Frequently we come across a variable that can take many values. For example, sup-
pose we have a group of 30 people and we want to know something about their
heights. We might call X the variable that represents their height. We'll be able to
make 30 different measurements of X; we might call them Xy, X,... X3. Each meas-
urement is a single observation drawn from our variable. (Variables are often re-
ferred to by upper-case letters, such as X. Individual values of a variable are referred
to by corresponding lower-case letters, such as x, or by the upper-case letter with a
subscript, such as X3, X,, X, or by the lower-case letter with a subscript, such as xy,
X2, X|)

Populations and samples

Taking this a step further, we can distinguish populations from samples. If al we
want to know is the height of our 30 people, we can measure it and that’s the end of
the matter. Our measured sample is the same as our total population. But very often,
we want to estimate something about a population by measuring a sample of that
population that is very far from being the whole population. For example, if we want
to know the height of 20-year-old human males in general, then we'd be unable in
practice to measure the whole population, but we could measure 30 male 20-year-
old Cambridge psychology undergraduates. This would be convenient, and we
would get a number that would be a definitive measurement of our particular set of
subjects, but would also be an estimator of the height of all 20-year-old male Cam-
bridge undergraduates, and an estimator of the height of al 20-year-old male hu-
mans. However, it wouldn’t necessarily be a very good estimator of the latter — the
sample may not be very representative of the whole population (average height in
the UK is shorter than in Germany but taller than for Japan) and, more importantly,
may be systematically different from the population mean (university students might
be taller than similarly-aged UK males in general). The latter is called bias. If we
want to obtain a sample that is likely to be a good estimator of the whole population,
we should draw a random sample — one where every member of the population
has an equal chance of being picked to be in our sample. Studies based on nonran-
dom samples may lack generality (or external validity) — so studying the effects
of a potential memory-enhancing drug on Cambridge students might tell you a lot
about what it’ll do to other university students, but not the adult population as a
whole.



Descriptive and inferential statistics

‘Statistics' itself can mean a couple of things. Descriptive statistics is the business
of describing things, you'll be shocked to learn; newspapers are full of it (‘Hen-
man’ s average serving speed was X..."). In research, it aso includes the business of
looking at the distribution of your data (‘is there an even spread of ability in my
subjects or do | have a high-performing subgroup and a low-performing sub-
group?). The job of having alook at the distribution of a data set before analysing it
in detail is called exploratory data analysis (EDA), a set of techniques developed
by a statistician called Tukey. Inferential statistics is the business of inferring con-
clusions about a population from studies conducted with a sample. When we meas-
ure an attribute (such as height) from a whole population, we' ve measured a pa-
rameter of the population. If we measure the same thing with a sample, we've
measured a statistic of the sample. So inferential statistics is also the business of in-
ferring parameters from statistics (in this specialized sense). We tend to use Greek
letters for parameters, such as # and o, but Roman letters for statistics (such as X
and s).

Exerting control: independent and dependent variables, between- and within-subject designs

If we manipulate or control a variable, it is termed an independent variable. We
might test the reaction times of a group of people having given them one of three
different doses of a drug; drug dose would then be a (discrete) independent variable.
We might want to know how the drug’s effect depends on their body weight; body
weight would then be a (continuous) independent variable. The thing that we meas-
ure isthe dependent variable, in this case reaction time.

When we come to manipulate independent variables, we must consider randomness,
just as we do when we choose samples from populations. If we are going to give our
drug to some of our subjects and no drug to other subjects, we must consider several
factors. First, we probably do not want the subjects to know whether they are re-
ceiving the drug or not, because this knowledge might in some way affect their per-
formance; we would therefore give the ‘non-drug’ group a placebo (Latin for ‘I shall
please — a sugar pill given by doctors to placate patients they think don't need
drug treatment). The groups should be unaware or ‘blind’ to whether they receive
drug or placebo; ideally, the person running the experiment should also be unaware,
so he/she can't bias performance in any way. This would make the study a double-
blind, placebo-controlled study. However, we must also make sure that our drug
group does not differ from the placebo group in some important way. If the drug
group were male and the placebo group were all female, any potential effects of our
drug would be confounded with the effects of the subjects’ sex; our study would be
uninterpretable; it would not have internal validity. Similarly, if the subjects who
are going to receive the drug have better reaction times to begin with than the sub-
jects who are going to receive placebo, our results might not mean what we think
they mean. Ideally, we would like our two groups to be matched for all characteris-
tics other than the variable we want to manipulate (drug v. placebo). We can try to
craft matched groups by measuring things that we think are relevant (e.g. reaction
time on the task we're going to use or a similar task, age, 1Q, sex...). But we proba-
bly can’t explicitly match groups on every variable that might potentially be a con-
found; eventually we need a mechanism to decide which group a subject goes in,
and that method should be random assignment. So in our example, if we have
plenty of subjects, we could just randomly assign them to the drug group or the pla-
cebo group. Or we could match them a bit better by ranking them in order of reac-
tion time performance and, working along from the best to the worst, take pairs of
subjects (from the best pair to the worst pair), and from each pair assign one to the
drug group and one to the placebo group at random. Random assignment takes care
of al the factors you haven't thought of — for example, if your subjects are al go-
ing to do an |IQ test in your suite of testing rooms, you should seat them randomly,
in case one room’s hotter than the others, or nearer the builders' radio outside, or
whatever. Common confounding factors it is always worth thinking about are time
and who collectsthe data.



If you're not in full control of the independent variable, your conclusions may be
limited. For example, suppose you find your drug improves reaction-time perform-
ance in people whose (pre-drug or ‘baseline’) performance was bad, but not in peo-
ple whose baseline performance was good. Y ou might conclude that your drug im-
proves performance up to some sort of ceiling. However, suppose that all your ‘good
performers were women and all the ‘bad performers were men. In that case, you
can't distinguish a performance-dependent effect from a sex-dependent effect.

So far, we've been talking about between-subjects designs, in which you do one
thing to some subjects (e.g. giving them drug) and another to others (e.g. giving
them placebo). A very powerful method that you might consider is to use a within-
subjects design, in which every person gets tested on drug and on placebo, at sepa-
rate times. The two types of design require different statistical analysis, which we'll
discuss later — basically, in a within-subjects design, two measurements from the
same person are related/similar in a way that two measurements from two different
people aren’t, and you have to take account of that. Within-subjects designs are very
powerful, but they do have some problems to do with time: order and practice ef-
fects. If everybody does your task on placebo first and then on drug, and they get
better, the effect might be due to practice rather than the drug. There are other kinds
of effectsthat can arise if everyone experiences treatments in a particular order. You
must design your experiment to avoid such potential confounds.



1.3 Plotting data: histograms

Thefirst thing we should do before analysing any set of dataisto look at it. For this,
it's helpful to have some kind of graphical way of representing it. Here's one.

Histograms and grouped histograms

Dataset 1
36 37 38 38 39 39 39 40 40 40 40 41 41 41 42 42 42 43 43 43
43 43 44 44 44 44 44 45 45 45 45 45 45 46 46 46 46 46 46 46
46 46 46 46 47 47 47 47 47 47 47 47 47 48 48 48 48 49 49 49
49 49 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51
52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 56 56
56 56 56 56 56 56 56 56 57 57 57 57 57 57 57 58 58 58 58 58
58 58 58 58 58 58 58 59 59 59 59 59 59 59 59 59 59 59 60 60
60 60 60 60 60 60 60 60 60 60 61 61 61 61 61 61 61 61 61 61
61 62 62 62 62 62 62 62 62 62 62 62 62 62 62 63 63 63 63 63
63 63 63 63 63 64 64 64 64 64 64 64 64 65 65 65 65 65 65 65
65 66 66 66 66 66 66 66 66 66 67 67 67 67 67 67 67 67 67 67
67 67 67 67 67 68 68 69 69 69 69 69 69 69 69 69 69 70 71 71
71 71 72 72 72 72 72 72 72 72 73 73 74 74 74 74 74 74 75 75
76 76 76 76 77 77 78 78 78 79 79 80 80 80 81 81 82 83 83 83
84 85 86 88 90 94 94 95 95 98 104 104 125

Here we have alarge list of measurements of something (it doesn’t matter what), but
we don’'t get much sense of the distribution. A histogram plots the frequency with
which observations fall into a particular category. If there’s a category for each pos-
sible value of the observation, we get a histogram like that on the left of the figure
(above); this is rather silly. If the categories are made a bit bigger, we get a histo-
gram like that on the right (below). These allow us to visualize the data readily and
we get a sense of its central tendency (most observations are around the 45-70
range), the distribution (observations are clustered around the left-hand side with a
‘tail’ to the right), and any extreme values or outliers (there are a couple of obser-
vations that are much higher than the others).
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Left: Freguency histogram. The x axis (abscissa) shows values or categories; the y axis (ordinate) shows the frequency
with which an observation fell into the appropriate category. This histogram looks rather ‘noisy’ because there are too
many categories. Right: Histogram with data grouped in more sensible categories. The same data as on the left. Each
category (on the x axis) represents an interval. In this example, the value printed on the x axis is the midpoint of the
interval; thus, ‘45" denotes those values falling into the range 42.5-47.5 (this is just done to save a bit of space).
Choose your own interval size to make the histogram look sensible — vh categories is often a good choice when then
are n observations. If you ever choose to make the intervals not all equal in width (you might call this asking for trou-
ble), you should make the area of each bar proportional to the number of observations, rather than the height.

Frequency

value



1.4 Measures of ‘central tendency’ — taking the average

Data set 2
12 18 19 15 18 14 17 20 18 15 17 11 23 19 10

Let’stake aset of 15 numbers (above). Where' sthe ‘middle’ or the ‘average ? There
are severa ways we might answer this question. The mode is the value that occurs
most commonly — in this case, 18. If we wanted to be formal, we could say that
these data are from a variable we measured called X. We could therefore say that
Mo(X) = 18. If there are two modes and they’re in some sense ‘adjacent’, we might

Mo, + Mo,

use the mean of the two, . If they're far apart, then the distribution is

bimodal and we'd report both modes.

Why use the mode? It can be applied to nominal (categorical) data. It isn't affected
by extreme scores. It may be the most meaningful; if you want to buy a job-lot of
shoes that are al the same size, you should buy shoes that are the modal size of the
population you're going to sell them to. By definition, for an observation x; taken at
random from a variable X, P(x, = mode) > P(x; = any other score). Why might you
not use it? If your categories are not particularly meaningful, nor will be your mode.
It is also less amenable to mathematical analysis than the mean.

The median is the value that's in the middle if we lined all the values up in order.
(More precisely, it's the value at or below which 50% of the scores fall when the
data are arranged in numerical order, as below.) Here, it's 17. Thisis written Med(X)
=17, or sometimes X = 17.
Data set 2, reordered
10 11 12 14 15 15 17 17 18 18 18 19 19 20 23

This was easy to find, because we had an odd number of observations. If we had an
even number of observations then we'd add up the two closest to the middle and di-
vide by two:
Data set 3
10 11 12 14 15 15 17 17 18 18 18 19 19 20 21 23
the two middle values
The medianis (17+18) + 2=17.5

Why use the median? Like the mode, it isn't affected by extreme scores (‘outliers').
However, it is also less amenable to mathematical analysis than the mean.

The mean is most people’s idea of the ‘average’. For a sample with n observations
X1, X, ... Xn, the sample mean of X iswritten X and calculated as follows:

n
2%
x=1=1 XX
n n

(The two notations are simply different ways of saying ‘sum al of the observations
and divide by the number of observations.) The mean of data set 2 above is 16.4.
The population mean is written ¢ (but we don’t normally measure this directly, as
discussed earlier). The mean of a given sample may not match the population mean
(measure ten tuna fish — is the mean of your sample identical to the mean of al the
tunain the world, or have you caught tuna that are slightly bigger/smaller than av-
erage?) — but on average, if you took alot of samples, the average of all the sample
means would be the same as the population mean. We say the sample mean is a
good estimator of the population mean (in fact, it's the best estimator).

The mean has certain disadvantages. It is influenced strongly by extreme values (try
changing just one datum to 10,000 in the data set above and recal culating the mean).
There may well be no individual datum whose value is the same as the mean. Inter-
preting it requires some justification that the underlying data is being measured on
an interval scale. However, it is eminently amenable to mathematical analysis and
has certain other properties which make it the most widely-used measure of central
tendency; for example, it includes information from every observation.



1.5 Measures of dispersion (variability)

Knowing a measure of central tendency doesn't tell us all we need to know about a
set of data. Two data sets can have the same mean but very different variability —
for example, {9,10,11} and {5,10,15} both have a mean of 10. It's often very im-
portant to have a measure of variability; there are several.

Range

This is simply the distance from the lowest to the highest point. The range of
{9,10,11} is 2; the range of {5,10,15} is 10. The range is simple, but is easily dis-
torted by extreme values.

Interquartile range

We talked about this when considering boxplots. It is the range of the middle 50% of
observations; it is the distance between the first and third quartiles (the 25" and 75™
percentiles). This is not distorted by extreme values; in fact, it may not pay enough
attention to values at the edge of a distribution!

The average deviation... is approximately zero and therefore useless.

We could measure how much each observation, x;, deviates from the mean, ?, and
- take the average of each deviation. However, since some deviations will be positive -
- and an equal number will be negative, the average deviation is about zero.

The mean absolute deviation... nobody uses.

One stage further: we take the deviation from the mean for each observation, and
take its absolute value (dropping any minus sign), i.e. |x, —X|. We then take the
- mean of these values:
2% —X|
: n

Though this one makes some sense, nobody uses it. Instead, they use the variance,

< the standard deviation, and the standard error of the mean. We'll cover the last -
< of these when we look at difference tests, but we'll consider the other two here.

mad.=

The variance— IMPORTANT

The population variance, ¢ is worked out as follows. Take each deviation from the
mean; square it (this eliminates negative values); sum all these together; divide by n,
the number of observations (this gives the average squared deviation per observa-
tion).
o2 = (% —u)?
n

However, since we rarely measure whole populations, we rarely use the population
variance. Instead, we usually measure samples of the population (and therefore es-
timate the population variance from a sample variance). The sample variance, §° is
just the same except we divide by n-1, not n. The formula on the far right is one
that’s mathematically identical but abit easier to usein practice.

2 (Z%)°
_I(x=%° _ A

2
sy =
X n-1 n-1

The standard deviation (SD) — IMPORTANT

The standard deviation (SD) is the square root of the variance (so it's sort of an av-
erage deviation from the mean). So the population standard deviation, ¢ is

oy =\ = /Z(xin—i)2



and the sample standard deviation, sis

. _%)2
SX:E: /2(2_1)() _

If the data are normally distributed (see below), 68% of observations fall within one
SD of the mean, and 95% of cases fall within 2 SD. For example, if the age of a
group of subjectsis normally distributed, and the mean age is 45 with a standard de-
viation of 10, then 95% of the cases would be between 25 and 65.

Some calculators refer to the population SD as 6,, and the sample SD as 6.
The coefficient of variation (CV) — not often used

The coefficient of variation is the standard deviation divided by the mean:
cv=>x
X

The standard deviation often increases with the mean. For example, if you rate
something on a scale with a range of 0—10 (perhaps with a mean of 5) then the
(population) SD can't be bigger than 5. If your scale was 0-100, with a mean of 50,
your SD could be as high as 50. By dividing the SD by the mean, the CV becomes
independent of this sort of thing.

. Discrete random variables, treated formally

(A-Level Further Maths.) A random variable (RV) is a measurable or countable
guantity that can take any of a range of values and which has a probability distri-
bution associated with it, i.e. there is a means of giving the probability of the vari-
able taking a particular value. If the values an RV can take are real numbers (i.e. an
infinite number of possibilities) then the RV is said to be continuous; otherwiseit is
discrete. The probability that a discrete RV X has the value x is denoted P(x). We
can then define the mean or expected value:

E[X] = X xP(X)
and the variance:
Var[X] = E[(x— E[X])2]= > (x—E[X])*P(X)

= 3 x2P(x) - (E[X]) = E[X2}- (E[ X))
and the standard deviation:
o’ =Var[X]

Why is the sample variance cal culated differently from the population variance?

What's all this ‘divide by n-1' business? Suppose we have a large population and
we know its mean (1) and variance (¢?) precisely (they are parameters; see above).
If we were to take an infinite number of samples, each containing n observations, we
can calculate statistics of each sample. For example, we can calculate the mean, X,
as usual, for each sample. We would like the sample mean X to be an unbiased es-
timator of the population mean u (i.e. we'd like X to be the same as i, on average),
and it is. However, thisisn’'t so simple for the variance. If we used the (wrong) for-
mula for the sample variance

Y (x-%)°
n
we'd find that, on average, we' d underestimate 6> — our estimator is biased.

- (@) Demonstration

When we calculate the variance, we calculate a whole load of values of (x—X)2.
~ These are called summed squared deviations from the mean, or summed sgquared ©
> errors (SSE). Suppose we have a population whose mean we know to be zero. Sup- ©
pose that we take three samples and find that they’re {1, —4, 3}. The SSE is (1 — 0)?



+ (-4 —0)? + (3 - 0)? = 26, whether we use the population mean or the sample mean
to calculate it, because for this particular sample the sample mean (0) happened to be
the same as the population mean (0). But suppose it wasn’t; suppose our sample was
{1, -1, 2}, which has a sample mean of 2/5. Then if we caculated the SSE around
the population mean, it'd be (1 — 0)* + (-1 — 0)? + (2 — 0)? = 6. But if we calculated
the SSE around the sample mean, it'd be (1 —2/3)? + (<1 — 2/3)? + (2 — 2/ 3)* = 4.67.
For a given sample, the SSE calculated using the sample mean will always be
smaller than (or equal to, but never greater than) the SSE calculated using the popu-
lation mean. Since we divide the population SSE by n to get the population variance,
if we divide the sample SSE by n we shall get something that on average is smaller
than the population variance. Some complicated maths is needed to tell us how much
smaller, but it turns out that on average we'll be wrong by a factor of (n-1)/n. So if
we divide our SSE by n—1 instead of n, we'll get the right answer.

(b) Explanation: degrees of freedom

The difference between calculating the sample variance and the population variance
is that when we calculate the sample variance, we already know the mean, but when
we calculate the sample variance, we have to estimate the mean from the data. This
leads us to consider something called degrees of freedom (df). Let's use an exam-
ple. Suppose you have three numbers: 6, 8, and 10. Their mean is 8. You are now
told that you may change any of the numbers, as long as the mean is kept constant at
8. How many numbers are you free to vary? You can't vary al three freely — the
mean won't be guaranteed to be 8. You can only vary two freely; you need the third
to adjust the mean to 8 again. Once you'’ ve adjusted two, you have no control over
the third. If you had n numbers and had to keep the mean constant, you could only
vary n—1 numbers.

When we calculate %, we already know z; we don't use up any df calculating it, so
the denominator remains n. (In our example above, we knew the population mean
was 0, regardless of the numbers in our sample, so when we calculated the popula
tion SSE we didn’'t need to ‘use any of the sample data up’ in estimating the mean.)
But when we calculate °, we must use up one df calculating the sample mean X, so
we only have n—1 df left (n—1 scores free to vary). Since the denominator is the
number of scores on which our estimate is based, it should reflect this restriction,
and be decreased by 1.

2 _ X(x-p)? 2= > (x-%)?

n n-1

o

: (c) Proof

The full proof that we'll be out by afactor of (n—1)/n unless we divide by n—1 rather
than n is more complicated (see Frank & Althoen, 1994, pp. 301-305).
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1.6 The normal distribution

11

Many things in nature are normally distributed. If we plot a histogram or a probabil-
ity distribution of them, the shape is something like that shown in the figure below: a
‘bell curve'. It might be peopl€e’s reaction times to respond to a race’s starting gun,
the number of barnacles found on a given area of rock, or the heights of French sol-
diers. Things that are normally distributed can have different means, and different
standard deviations (see examples below), but once we know the mean and the stan-
dard deviation, we know all there is to know about the way that they’ re distributed.

mean
0.6 - i 0.5 1
1 N(50, 5?) | N0, 1) = d(2)
A normal distribution The standard normal
0.5 1 with mean 50 0.4 1 distribution; mean
and standard 0,SD 1.
0.4 1 deviation 5 (variance 03
52=125). :
= N
Q\E 0.3 =
0.2 §
0.2
0.1 4
0.1 1
0.0 ; — ; . 0.0 e ; . .
20 30 40 , 50 ; 60 70 80 -4 /” -2 0 2 4
X 4
CI;(—Z) = area under curve to the left of z =-2
1 i = probability of z being less than —2
E f@% of the area fa]lsi @(+o0) = 1, the area under the entire curve.
within 1 SD of the mean. D(0)=0.5
i ; The letter Z is used for the standard normal distribution (thus ‘Z scores’).
—p s
As before, ~68% of the area falls within 1 SD of the mean, and so on.
~95% of the area falls
within 2 SD of the mean.
0.5 Different means, same standard deviation 0.5 7 Same mean, different standard deviations
u=3 n=>s u=7 n=>s
o=1 c=1 o=1 o=1
0.4 0.4
7 081 bo1s
z 2
=< =<
0.2 0.2 A
n=s
c=2
0.1 4 0.1
0.0 T T T T i 0.0 T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
X X

Top left: a normal distribution, which we describe as N(u,6) where # is the mean and o is the variance (o is the stan-
dard deviation). Top right: the ‘standard’ normal distribution, which always has a mean of 0 and a standard deviation
of 1, and which isreferred to by the letter Z. Both curves are perfectly symmetrical about the mean. Below: examples of

normal distributions with different means and SDs.

Why is the normal distribution (sometimes called the Gaussian distribution) impor-
tant?

(1) Z scores

First, we can calculate how likely a particular measurement is to have come from a
particular population. The area under bits of a probability distribution curve
(such asthe normal distribution) represents the probability or proportion of ob-
servations falling into a particular range. Suppose healthy people have a mean
plasma potassium concentration of 4.25 mM, with a standard deviation of 0.383



mM, and that this is normally distributed. Since I’ ve told you that about 95% of the
population fall within 2 SD of the mean, we can work out that 95% of healthy peo-
ple have a potassium concentration in the range 3.5-5.0 mM. Furthermore, if a pa-
tient has a potassium concentration of 5.5 mM, we can work out the probability of
this concentration or higher being found in the healthy population. The way we do
that is as follows. It would be very tedious to work out the mathematical properties
of the plasma-potassium normal distribution, which we'd call N(4.25, 0.383%),
whenever we wanted to answer a question like this. It would certainly not be quick
with pen and paper. So we convert (‘transform’) our potassium score into a number
from N(4.25, 0.383?), which we know nothing about, to a special distribution called
the standard normal distribution, which we write N(0,1) or Z, that we know eve-
rything about. This is important and very easy: if X is our potassium measurement, u
is our potassium mean, and ¢ is our potassium standard deviation, then
X—H
o

In our example, z = (5.5 — 4.25)/0.383 = 3.26. We have converted our potassium
level of 5.5 mM to a Z score of 3.26. We can then use our tables of the standard
normal distribution (you' ve got a copy) to find out how likely a Z score of 3.26 (or
higher) is to have come from the standard normal distribution. This is answering the
same question as ‘how likely is a potassium level of 5.5 mM to have come from the
distribution of plasma potassium in healthy people? Our tables tell us that we want
the probability that Z > 3.26, and that’s 1 minus the probability that Z < 3.26, which
i50.9994; so the answer to our question is 1 — 0.9994 = 0.0006. In other words, it's
highly unlikely that a plasma potassium of 5.5 mM would be found in a healthy
population. Our patient’s probably not healthy — better watch it, because if the po-
tassium level goestoo high, he'll have a cardiac arrest.

Z=

Z scores carry information on their own, because you automatically know what
the mean and standard deviation are (they’re 0 and 1, respectively).

Extreme Z scores (big positive numbers or big negative numbers) are unlikely
to have come from the distribution in question.

Sometimes, information is presented in a normalized form. For example, 1Q scores
are transformed to a distribution with a mean of 100 and an SD of 15; knowing this,
you can work out what proportion of the population have an 1Q over 120.

(2) Assumptions of statistical tests

Second, many statistical tests assume that the data being tested is normally distrib-
uted. We will return to this point later.

(3) Confidence intervals

Third, we can work out confidence intervals on any measurement we make. We
saw an example above: we said that 95% of healthy people have a potassium con-
centration in the range 3.5-5.0 mM. That is the same as saying the 95% confidence
interval (Cl) for the healthy-person datais 3.5-5.0 mM.

For any given set of data X, we can work out 95% confidence intervals as follows:

1. Calculatethe mean, 4, and standard deviation, e.

2. The Z scores that enclose 95% of the population are —1.96 and +1.96. Why?
Well, our tablestell usthat the area (probability) under the Z curve to the left of
z = -1.96, written, @(-1.96), is 0.025. Similarly, they tell us that @(+1.96) =
0.975. Therefore the area under the normal curve between z = —1.96 and z =
+1.96 is &(+1.96) — &(-1.96) = 0.95.

3. Z=(X-u)lo, therefore X = u + Zo. Therefore the X scores corresponding to Z
scores of £1.96 are 4 *+ 1.96 o, the 95% confidenceintervals.

For our potassium example, we had a mean of 4.25 and an SD of 0.383; therefore,
our 95% confidence intervals are 4.25 — (1.96 x 0. 383) and 4.25 + (1.96 x 0. 383),
or 3.5 and 5.0. Try working out the 95% confidence intervals for 1Q scores.

12



Deviations from normality

Not everything you measure will be normally distributed. Here’s a normal distribu-
tion and some non-normal distributions:

NORMAL BIMODAL
unimodal
not skewed

POSITIVELY SKEWED
(tail too long at the positive end)

frequency
frequency
frequency

o
o

0

frequency

o

13

NEGATIVELY SKEWED
(tail too long at the negative end)

score score score

Figuresillustrating bimodality and skew.

Continuous random variables; probability density functions

> (A-Level Further Maths.) For a continuous random variable X, the probability of an °
exact value x occurring is zero, so we must work with the probability density func-
tion (PDF), f(X). Thisis defined as

P(a<x< b)=?f(x)dx

Tf(xdx=1

—oo

vx: f(xX)=0
- (Vx means ‘for all values of x’). The mean or expected value E[X] is defined as
E[X]= |xf (x)dx
The variance, Var[X] isgiven by B
Var[X] = [x?f (x)dx— (E[X])2

The cumulative distribution function (CDF, aso known as the ‘distribution function’
or ‘cumulative density function’), F(a), is given by

F(a)= | f(x)dx

F(a)=P(x<a)
P(a<x<b)=F(b)-F(a)

Definition of a normal distribution
—(x-p)°
f(x)= e 2° This distribution is often abbreviated to N(x, o).
o\ 2rx

The standard normal distribution

The ‘standard’ normal distribution is N(0,1), i.e. a normal distribution in which g =
0 and o = ¢* = 1. A standard normal random variable is frequently referred to as Z.
The PDF is frequently referred to as ¢(z) , and the CDF as ®(z) . So

#(2)= %e (2)= foct

Transforming any normal distribution to the standard normal distribution

Aswe' ve seen, if Xisanormally-distributed random variable with mean x and stan-
dard deviation ¢, and Z is a standard normal random variable, then

X— U
o

Z=

score
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1.7 Probability

How much probability do you have to know? Not very much. You need to know
what a probability is, what P(A) and P(-A) mean, and preferably what P(BJA)
means. If you're not keen on probability, you can skip the rest of this section and
move on to the logic of null hypothesis testing. If you're a bit more capable mathe-
matically, you may like to read this section — probability is at the heart of statistical
testing and you'll be streaks ahead of many researchers if you have a solid grasp of
probabilistic reasoning.

Basic notation in probability

P(A) probability of an event A
P(—A) probability of the event ‘not-A’, the opposite of A.

Thisisvarioudy written as -A, ~A or A.

P(Av B) probability of A or B (or both) happening (the nota-
tion is like set union: U). Sometimes written
P(A or B).

P(AA B) probability of A and B both happening (the notation
is like set intersection: ). Sometimes written
P(A, B).

P(B|A) probability of B, given that A has aready happened

Basic laws of probability

If P(A) =0, then A will never happen (isimpossible); if P(A) = 1, then A is certain
to happen. Probabilities are alwaysin this range:
0<PA)<1 [1]

Pick acard; there are 52 equally-likely outcomes; 13 are clubs, so P(#) = /s,:
P(A) = number of waysin which A occurs [2]
number of waysin which all equally likely events, including A, occur

Either A happens or —=A happens (I flip acoin, it either comes up heads or tails):
P(A) + P(-A) =1 [3]
P(-A) =1-P(A)

Odds

Odds are another way of expressing probability: they're the ratio of P(A) to P(=A).
For example, Tiger Woods might be the favourite to win a tournament at odds of
9:5, often stated ‘9 to 5 on’ (= °/5 = 1.8). This means that for every 14 times he
plays the tournament, he'd be expected to win 9 times and lose 5. If the event that
Tiger Woodswinsis A and his odds are x, we can write

P(A) _,
P(—A)
Therefore
PA 1P _1 o i

So in the case of Tiger Woods, since x = 1.8, P(A) = 0.64. In general
odds

robability =
P y 1+ odds

If the odds on a player were quoted as ‘3 to 1 against’, the odds on them losing are
3:1 so the odds on them winning are 1:3 (i.e. probability of them winning is ¥4 =
0.25).



The rest of the basic laws of probability

If A and B are mutually exclusive events (= P(AA B) =0) then
P(Av B)=P(A)+ P(B) [4]
In the more general case,
P(Av B)=P(A) + P(B)-P(AAB) [5]

If A and B are independent events — that is, the fact that A has happened doesn’t
affect the likelihood that B will happen, and vice versaa P(B)=P(B|A) and

P(A) = P(A|B) — then
P(AA B) = P(A)x P(B) [6]

< If 1 toss afair coin and roll afair die, the probability of getting a six and a head is
© Y/¢x '/, =11,. The probability of getting asix or a head or both is '/ + '/, — /1, -

R
< =Y

In the more genera case:

P(AAB)=P(A)xP(B|A) [7]
If | have a bag that initially contains 4 red marbles and 6 blue marbles, and | with-
draw marbles one by one, the probability of picking ared marble first (event A) and
ablue marble second (event B) is*/1ox %/ = */ 1.

A bit more advanced: Bayes' theorem

From[7],
P(AAB) (8]

P(B|A) = P(A)

- Wealso know, from [7],
| P(AAB)=P(B A A) =P(B)xP(A|B)
Therefore, from [8],
(8| )= PEXPAIB) o
P(A)

This is the simplest statement of Bayes theorem. Suppose event A is discovering
an improperly-sealed can at a canning factory. We know there are k assembly lines

~ at which cans are sealed, and we'd like to know which one produced the faulty can. -

Let's call B; the event in which assembly line 1 produced the faulty can, B, that in
which line 2 produced the faulty can, and so on. What's the probability that the can
camefromlinei?

We know that a faulty can must have came from one of the assembly lines:
P(A) = P(B)P(A|B,) + P(B,)P(A|B,) +...+ P(B)P(A| B,)
or to write that in a shorter form:

P(A) = éP(BJ)P(Al B,)

Therefore, from[9],

(8, | 4= P(BIXP(AIB) 110

Jgll:’(l?q-)l:’(AI B;)

S0 suppose there are three assembly lines; lines X, Y and Z account for 50%, 30%
and 20% of the total output. Quality control records show that line X produces 0.4%
faulty cans, Y produces 0.6% faulty cans, and Z produces 1.2% faulty cans. Using
Bayes' theorem in the form of [10] will tell us that the chance our faulty can comes
fromline X is0.32 (similarly, 0.29 for line Y and 0.39 for line Z).
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Let’stake a simple, fictional example in which only two things may happen. Q. The
prevalence of a disease in the general population is 0.005 (0.5%). Y ou have a blood
test that detects the disease in 99% of cases. P(positive | disease) = 0.99. However, it
also has a false-positive rate of 5%: P(positive | no disease) = 0.05. A patient of
yours tests positive. What is the probability he has the disease? A. We'd like to find
P(disease | positive). By [9],
P(dis| pos)  P(dis)x P(pos|dis)
P(pos)
B P(dis)x P(pos|dis)
P(dis)P(pos|dis) + P(—dis)P( pos|—dis)
0.005x0.99

~ 0.005% 0.99+ 0.995x 0.05
=0.09

So even though our test is pretty good and has a 99% true positive rate or ‘sensitiv-
ity’ (a1% false negative rate) and a 5% false positive rate (a 95% true negative rate
or ‘specificity’), our positive-testing patient still only has a 9% chance of having the
disease — because it's rare in the first place.

Bayesian inference

Suppose we have a hypothesis H. Initially, we believe it to be true with probability
P(H); we therefore believe it to be false with probability P(=H). We conduct an ex-
periment that produces data D. We knew how likely D wasto arise if H was true —
P(D|H) — and we knew how likely D was to arise if H was false — P(D|-H). We
can therefore use Bayes' theorem [9] to update our view of the probability of H:
p(H | D) = PHP(DIH)
P(D)

P(H D) = P(H)P(D[H)
P(H)P(D|H)+P(=H)P(D|=H)

This can be expressed another way (Abelson, 1995, p. 42):
P(H|D) _ P(H) « P(D|H) [11]
P(—H|D) P(—=H) P(D|=H)

or
posterior odds = prior odds x relative likelihood

16



1.8 The logic of null hypothesis testing; interpreting p values

17

We will come across a range of statistical tests. Most produce a test statistic and an
associated p value; you will see these quoted in scientific journals time and time
again (Fp47 =10.7, p<.001... F318=4.52, p = .016... tgo = 1.96, p = .055). They al
work on the same principle: that of null hypothesistesting.

Null hypothesis testing approaches the questions we want to ask backwards. We
typically obtain some data. Let’s say we measure the weight of a hundred 18-year-
old women who are either joggers (50) or non-joggers (50). We would like to know
whether the mean weights of these two group differ. Obvioudly, it's highly unlikely
that the means will be exactly the same. Suppose the joggers are dlightly lighter on
average. How big a difference counts as ‘significantly’ different? The conventional
logic is as follows. Either the difference arises through chance, or there is some sys-
tematic difference (such as that jogging makes you thin, or that being thin encour-
ages you to take up jogging). Our research hypothesis (sometimes written Hy) is
that the joggers are different from the non-joggers (that our two samples come from
different underlying populations). We'll invent a corresponding null hypothesis
(sometimes written Hg) that the observed differences arise purely through chance.
WEe'll then test the likelihood that our data could have been obtained if this null hy-
pothesis were true. If this probability (the so-called p value) is very low, we will re-
ject the null hypothesis — chance processes don’t appear to be a sufficient explana-
tion for our data, so something systematic must be going on; we'll say that thereisa
significant difference between our two groups. If the p value isn’t low enough, we
will retain the null hypothesis (applying Occam’s razor — because the null hy-
pothesis is the simplest on offer) and say that the groups do not differ significantly.

The exact meaning of a p value

Let’s say we run a statistical test to examine whether these two groups differ. It pro-
duces a test statistic (such as at value; we'll consider how this works later) and a p
value — let’s say 0.01. What does this mean? For shorthand, let’s call D the event of
obtaining a set of data, H be the research hypothesis, and —=H the null hypothesis.

e Correct: “If the null hypothesis were true [if it were true that there were no
systematic difference between the means in the populations from which the
samples came], the probability that the observed means would have been as
different as they were, or more different, is 0.01. This being strong grounds
for doubting the viability of the null hypothesis, the null hypothesis is re-
jected.”

Correct: P(D |-H) = 0.01.

Wrong: “The probability that the null hypothesisistrueis0.01.”

Wrong: “The probability that the research hypothesisisfalseis0.01.”
Wrong: P(-H | D) = 0.01.

Wrong: “The probability that the null hypothesisisfalseis 0.99.”

Wrong: “The probability that the research hypothesisistrueis 0.99.”
Wrong: P(H | D) = 0.99.

It's easy to think that these are al saying the same thing, but they’re not. Compare
(1) the probability of testing positive for a very rare disease if you have it, P(positive
| diseased), with (2) the probability of having it if you test positive for it, P(diseased |
positive). If you think the two should be the same, you’ re neglecting the ‘base rates
of the disease: typically, the second probability is less than the first, asit’s very un-
likely for anybody to have a very rare disease, even those who test positive. Doctors
intuitively get this wrong al the time. Substitute in P(rich | won the lottery) and
P(won the lottery | rich)... the first probability is much higher, because winning the
lottery is so rare.

Bayes' theorem and Bayesian statistics
The formal way to relate what we get from significance tests, P(data | =hypothesis),

to what we really want, P(hypothesis | data), is by using Bayes' theorem (see section
on probability). Thisis perhaps the simplest expression to usein this case:



P(HID) _ P(H) P(D[H)
P(wH |D) P(—=H) P(D|=H)
posterior odds = prior odds x relative likelihood.

For example, suppose that a climatologist calculates that a 1°C rise in temperature
one summer had a probability of 0.01 of occurring by chance (p = 0.01). What does
that tell us? It does not tell us that there's a 99% probability that it was due to the
greenhouse effect. It does not even tell us that there's a 99% probability that it was
not due to chance. The Bayesian approach would be this: suppose that reasonable
people believed the odds were 2:1 in favour of the greenhouse hypothesis (H) before
this new evidence was collected — these are the prior odds. Now, we' ve been told
that P(D|=H) = 0.01. We need to know the probability that a 1°C temperature rise
would occur if the greenhouse hypothesis were true; that is, P(D|H). Suppose thisis
0.03. Then the relative likelihood is 0.03/0.01 = 3. So the posterior oddsare2 x 3 =
6 in favour of the greenhouse hypothesis; odds of 6:1 equate to P(H|D) = °/, = 0.86.

Typel and Type Il error; power

Although p values speak for themselves in one sense, it's very common for re-
searchers to use them as a yes/no decision-making device. | won't debate the wis-
dom of this now, but this is how it works. A threshold probability, usually called a
(alpha), is chosen; typically, a = 0.05. If agiven p vaueisless than a, the null hy-
pothesisis rejected; if p > a, the null hypothesisis retained. Y ou might see thislogic
described in paperslike this: ‘the two groups were significantly different (p < 0.05),’
or ‘a significance level of a = 0.05 was adopted throughout our study... the two
groups were significantly different.’

Obvioudly, if a = 0.05, then there is a 0.05 (one in twenty) chance that an effect we
label as ‘significant’ could have arisen by chance if the null hypothesis was true. If
this happens, and we accidentally decide that a effect was not attributable to chance
when actually it did arise by chance, we're said to have made a Type | error. The
probability of making a Type | error is a. Conversely, the probability of correctly
not rejecting the null hypothesiswhen it istrueis 1 —a.

The opposite mistake is failing to reject the null hypothesis when it is false — that
is, ascribing your data to chance when it actually arose from a systematic effect.
Thisis called a Type Il error; its probability is labelled g (beta). Conversely, the
probability of correctly rejecting the null hypothesis when it isin fact falseis 1 — ;
thisis called the power of thetest. If your power is 0.8, it means that you will detect
‘genuine’ effectswith p =0.8.

True state of theworld

Decision Hotrue H, false

Reject Hy Typel error Correct decision
p=a p=1-p=power

Donot regject Hy Correct decision Typell error
p=1l-«a p=p

One-tailed and two-tailed tests

There's one other thing we should consider when we talk about o and Type | error.
Let’s go back to the example of our joggers. Presumably our leading hypothesis is
that joggers will be thinner than non-joggers, so we want to be able to detect if the
mean weight of joggers is less than that of non-joggers, and we might choose a =
0.05. But what will we do if the joggers actually weigh more? Well, this depends on
what kind of test we decided on. If we were only interested in the difference be-
tween the groups if the joggers weighed less, we would use a one-tailed (direc-
tional) test, so that if there was less than a 5% probability that chance alone could
have produced a difference in the direction we expect then we would reject the null
hypothesis. But if we want to be able to detect a difference in either direction, we
must use atwo-tailed (nondirectional) test. In that case, we must ‘allocate’ our 5%
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o to the two ways in which we could find a difference (joggers weigh more; joggers
weigh less) — so we'd allocate 2.5% to each tail of the distribution. This is shown
in the figure below (plotted on a normal distribution; you might like to think of it in
terms of the joggers and the potassium examples). In general, unless you would
genuinely not be interested in both possible outcomes (quite a rare situation), you
should use a two-tailed test. What you must not do is to run a one-tailed test (o =
0.05), find a non-significant result, then look at the data, realize the differenceisin
the other direction to the one you predicted, and decide then to do a two-tailed test
(o = 0.05) — because what you have actually done is to alocate 5% to one tail, then
allocate another 2.5% to the other tail, meaning that you have actually run a sort of
asymmetric two-tailed test with atotal « of 0.075 (7.5%). Decide what test you want
in advance of analysing the data.
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One-tailed and two-tailed tests.
The danger of running multiple significance tests

Every time you run atest, if the null hypothesisis true, you run the risk of making a
Type | error with probability a. So if you run n tests, you have n chances to make a
Type | error. What' s the probability that you don’t make any Type | errors when you
run n tests? Well, the probability that you don't make a Type | error on eachtestis 1
— a, so the probability you make no Type | errors when you run ntestsis (1 — «)". So
the probability that you make at least one Type | error when you run n tests when
the null hypothesisistrueis1 — (1 —a)".

If you set o = 0.05, you must expect on average one in every 20 tests to come up
‘significant’ whenitisn't (Typel error) if the null hypothesisisin fact true. If you
run 20 tests and the null hypothesisis true, the probability of making at least one
Typel erroris 1 — (1 —0.05)® = 0.64. Thisis why running lots of tests willy-nilly is
aBad Idea— eventually, something will ‘turn up significant’, but that doesn’t mean
itredlyis.

This doesn’'t mean that 5% of all your significant results are ‘wrong’. Y ou can only
make Type | errors when the null hypothesisis true! In practice, on some occasions
the null hypothesis will be false, so we can’'t make a Type | error. Therefore, some-
thing less than 5% of our ‘significant’ results will be Type | errors; o is the maxi-
mum Typel error rate.

Isthere a difference between p = 0.04 and p = 0.0001?

Yes. Whether you look on p values as expressing the degree of confidence with
which you reject the null hypothesis, or as information you can use to update your
opinions of the world in Bayesian fashion, p values have real meaning. Some people
will argue that as long as p < a you needn’t report the actual p value, but this ap-
proach takes information away from the reader.

p=0.06



What happens if you run a well-designed experiment in which you give a treatment
to one group of people and not another, measure some aspect of their performance,
test for a difference between your groups and get p = 0.06? You could do one of
severa things. (1) Re-run your experiment with more subjects; perhaps you did not
have enough statistical power to detect the size of effect that your treatment pro-
duced. You might have been spared this embarrassment if you had tried to calculate
your statistical power in advance; you might then have realised your experiment was
under-powered in the first place. (2) Report your experiment as showing a ‘trend’
towards an effect; it's not like p = 0.04 is somehow magically better than p = 0.06,
after al. (3) Use a = 0.1 rather than o = 0.05. However, not only will journal editors
definitely be upset with this (for no real reason — there' s nothing magical about a =
0.05), but it is highly dubious to change your a only after you've run your experi-
ment — after all, you're only doing it to shore up a not-quite-significant result, and
you're therefore distorting the results. You should have chosen o in advance. Simi-
larly, it is very dubious to add subjects to your original experiment ‘until it reaches
significance’ — you're only doing this because your original datawas ‘near’ signifi-
cance and you want it to be significant. If you had a compelling reason to want your
treatment to have no effect, you wouldn’t be doing this — so you're biasing the ex-
periment by thiskind of post-hoc fiddling.

What does ‘not significant’ mean?

What happens when you want to prove that a hypothesis is not true? Suppose your
contention is that jogging doesn’t affect body weight; you take two identical groups
of people, set half of them jogging for a couple of months while the rest eat pies, and
measure their weights. Y ou find no difference between the groups (p = 0.12). What
does this mean? It means that you have failed to reject the null hypothesis — thereis
afair chance (0.12) that your observed difference could have arisen by chance aone.
It does not mean that you have proven the null hypothesis. Take an extreme exam-
ple: your null hypothesis is that al people have two arms. Just because the next
5,000 people you meet all have two arms (failure to reject the null hypothesis) does
not mean that you have proved the null hypothesis.

Y ou can do two things when you fail to reject the null hypothesis: (1) view it as an
inconclusive result, or (2) act as if the null hypothesis were true until further evi-
dence comes along.

Really, you should consider your level of ¢ and § to meet the needs of your study. If
you want to avoid Type | errors (e.g. telling someone they have an ulcer when they
don’'t), set a low. If you want to avoid Type Il errors (e.g. telling them to go home
and rest when they’re about to die from a gastric haemorrhage), set o higher. The
other thing you can do when you're designing an experiment is to make sure the
power is high enough to detect effects with a reasonable probability — such as by
using enough subjects. If you take two people and make one jog, you'll never find a
‘ggnificant’ difference between the jogging and non-jogging groups, but that
doesn’'t mean people should believe you when you say that jogging doesn’t reduce
weight. If you used half a million people and still found no effect, your study might
command more attention.

A statistical fallacy to avoid: A differsfrom C, B doesn’t differ from C...

If you test three groups and find that A is significantly different from C, but B is not
significantly different from C, do not conclude that A is significantly different from
B. To see why, imagine that A is smaller than B, and B is smaller than C. Then we
might find a difference between A and C (p = 0.04) and no difference between B
and C (p = 0.06) — but the p values are just on either side of our threshold of 0.05
and A and B might be nearly the same! Making this conceptual mistake is quite
common.

Similarly, just because A isn’t significantly different from B, and B isn’t signifi-
cantly different from C, doesn’t mean that A isn't significantly different from C.
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1.9. For future reference...

This flowchart (based on Howell, 1997, p.11) should help you fit the various statistical tests we'll cover into a coherent
framework. It'sNOT intended to be a prescriptive ‘use thistest in thiscircumstance' chart — once you understand
what a test does, you can apply it whenever you feel it's appropriate. And DON'T TRY TO LEARN IT! Tests with
dotted lines around them aren’t covered in the IB cour se.
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Descriptive statistics in Excel — relevant functions (see Excel help for full details)

Excel does basic analysis (especialy if you switch on the Analysis ToolPak, available in Excel 97 from the Tools —
Addlns menu, and thereafter from Tools — Data Analysis) and can generate quite good graphs, with alittle playing. But
in the exams you'll be required to do basic statistical tests with a calculator, so don't become reliant on a computer yet.

AVERAGE(...) Mean X of agroup of cells, eg. AVERAGE(A1:A6) givesthe mean of cellsAl, A2... A6.
MEDIAN(...) X or Med(X)
MODE(...) Mo(X)
COUNT(...) n
VARP(...) population variance ¢°
VAR(...) sample variance &
- STDEVF(...) population standard deviation o
STDEV(...) sample standard deviation s
STANDARDIZE() converts a value X into a standardized normal value Z (you have to supply X, # and o).
NORMSDIST() the standard normal cumulative distribution function, ®(z) . Give it a z score and it returns a
cumulative probability, i.e. p(Z <2z)=®(2) =, ¢(t)dt .
NORMSINV() the inverse standard normal cumulative distribution function, ®~(z). Give it a cumulative

probability p(Z < 2) and it’ll tell you the z score associated with that probability.
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