
1

Arachnid code collection
Rudolf Cardinal. 1 July 1999.

ARACHNID CODE COLLECTION... 1
Introduction .. 1
References... 1
Building an application .. 1
The modular libraries in detail... 3
The applications ... 4

For Rudolf..4
For Anastasia ...5
For Yogita..5
For Felicity...5
For Yia-Ping ..5

Introduction
This is a collection of all my Arachnid code. Arachnid, from Cenes Cognition né Paul Fray Ltd, is a extension of BBC
BASIC V designed for real-time control applications in the loose sense of the word; it’s not a language itself. The two
most important features of this collection, as I see it, are

1. Fairly legible code. (Illegible code is bad code, even if it works. Legible code may not be good, but at least you
can tell.)

2. Modular libraries to save effort.

Libraries are collections of functions that have been written to perform a specific, useful task and have been carefully
tested. You can use them without wondering how they work (or have a look under the bonnet if you’re so inclined; it’s a
good way to learn). More importantly, you can be sure they’re not going to crash or do something weird, because
they’ve been tested thoroughly and used a lot.

For your own sake, don’t modify my libraries. Write your own for extra functions. Otherwise, you’d lose your
changes if I altered a library function and gave you the new copy. But I’d appreciate copies of any code you write using
this system, plus of course comments and bug reports (though I hope that won’t happen). And only put functions in a
library if they’re useful for a range of programs; if they’re specific to a single application they might as well live in the
main program.

To use a library, place a reference at the start of your program like
LIBRARY "UI"

for the user interface library called UI. I keep all the libraries in a single place (a directory called ProgLibs) and use an
operating system variable to find them, so my references look like this:

LIBRARY "<RudolfDir>.ProgLibs.UI"
This system is described below (under “Putting an application together”).

References
• The Arachnid manual
• BBC BASIC Reference Manual, from Acorn. You don’t get a proper guide to BASIC with the computers these

days.

Disk formats
PCs will not read Arc disks. Arcs will read PC disks, as long as they do not contain long (Windows 95/NT) filenames.

Putting an application together

1. Create a directory to hold all your programs and data. Mine’s called Rudolf (see Table 1).

2. Copy the ProgLibs directory in its entirety into your personal directory. This contains all the libraries.

3. Within your personal directory, create a subdirectory whose name begins with an exclamation mark (!). This tells
the computer that it contains an application. An example is the !Evenden directory shown in Table 1.

4. Optionally, create a data directory for the same application (within your main directory). An example is Evenden-
Dat in Table 1.

2

5. Create a !Run file within the application directory. An example is given in Table 2. It will probably work without
modification.

6. Create a Start file in the same place. A sample file is shown in Table 3. You will have to modify the parts in bold
to refer to your own personal directory, data directory and BASIC program name. You must not change the phrase
“RudolfDir” itself, because the code searches for that. It is important that the ProgLibs directory is in the directory
you name in the “*Set RudolfDir somewhere” command.

7. Store the program itself in the application directory. Important: I keep the programs in a text format so I can edit
them on a PC, but they must be stored as a BASIC program to run. To convert between the two, you must use !Edit
on the Archimedes. Load the text file into !Edit; click the middle mouse button; choose Misc → Set Type and type
in BASIC. Press Enter. Now save the program where you want it to live. To convert BASIC into text, simply repeat
the process but type TEXT.

Table 1: Directory structure on the Archimedes. Directories are underlined.

$ Root directory of the hard disk.
|
+-- Apps
+-- !Arachnid
+-- !2ndOrdr
+-- ...
+-- Rudolf Your personal directory, containing everything.
 |
 +-- !Evenden An Arachnid application, containing:
 | !Run Generic !RUN file
 | Start START file that calls the program
 | Evenden The BASIC program itself.
 |
 +-- !TestCBox An Arachnid application.
 +-- EvendenDat Data directory for the !Evenden program.
 +-- ProgLibs Contains all the libraries.
 | Arachnid
 | BoxConst
 | DateTime
 | ...
 |
 +-- ...

Table 2: Sample !RUN file

| !Run file for Arachnid code
DIR <Obey$Dir>
RMEnsure Arachnid 0 RMLoad :4.$.!Arachnid.ArachMod
RMReInit Arachnid
ECHO |V|C|U
EXEC Start
BACK

Table 3: Sample START file. Customize the parts in bold.

*BASIC
V.11:P.SPC(26):V.13,11,21
*DIR <Obey$Dir>
INSTALL ":4.$.!Arachnid.ArachLib"
PROCinit
P.CHR$6"Arachnid Issue 1.12 (C) 1991 Paul Fray Ltd"'
*SET RudolfDir :4.$.Rudolf
*DIR <RudolfDir>.EvendenDat
CHAIN"<Obey$Dir>.Evenden"

3

The modular libraries in detail
Library Purpose Functions and procedures intended for general use.

Note: in all cases, there is further documentation in the source code itself.

Arachnid Uses Arachnid to control switches
and sensors. Functions to dispense
pellets, flash lights/clickers, calcu-
late the mass of a number of 45 mg
pellets, etc. The flashing code is
particularly useful.

FNswitch_number(box%, line%, nboxes%)
FNswitch_number_2(box%, line%, nboxes%)

PROCsingle_pellet(line%)
PROCfast_pellet(line%, numpellets%)
PROCspaced_pellet(line%, numpellets%, timer%, gap%)
PROCold_spaced_pellet(line%, numpellets%, timer%, gap%)

PROCstart_flash_line(line%, timer%, on%, off%)
PROCstop_flash_line(line%, timer%)
PROCold_start_flash_line(line%, timer%, on%, off%)
PROCflash_line_number(line%, timer%, on%, off%, count)
PROCold_flash_line_number(line%, timer%, on%, off%, count)
PROCflash_line_time(line%, timer1%, timer2%, on%, off%,
duration%)
PROCuserfunc_start_flash(on_func$, off_func$, timer%, on%,
off%)
PROCuserfunc_stop_flash(off_func$, timer%)
PROCuserfunc_flash_time(on_func$, off_func$, timer1%,
timer2%, on%, off%, duration%)
FNswitch_on_line(line%, bogus%)
FNswitch_off_line(line%, bogus%)

FNfood_mass(pellets%)
FNliquid_volume(dips%)

ASCII For sending ASCII output to a file. PROCprint_line(channel%, string$)
PROCprint_string(channel%, string$)
PROCprint_string_visibly(channel%, string$)
PROCprint_line_visibly(channel%, string$)

BoxConst Defines the wiring of all the boxes
we use and dimensions appropriate
variables.

PROCcombined_boxes
PROCintermediate_boxes
PROCsucrose_boxes
PROCpellet_boxes
PROCyiaping_boxes
PROCfive_hole_boxes
PROCfive_hole_boxes_yogi

DateTime Generates a date/time code. FNdate_time_code

DelayLib Specialist library to support delay-
of-reinforcement tasks

The main infrastructure for AdjDelay, Evenden, Richards and DTrain.

Filename Asks the user for a filename and
ensures that it’s a safe one to use.

FNget_filename(prompt$)
FNget_filename_default(prompt$,default$)
FNget_filename_dangerous(prompt$)

JP Touchscreen code. Interfaces to IntaSolve touchscreens. See source code.

Random Random number handling, and
other random mathematical things

FNrandom_integer(min%,max%)
FNmin(a%, b%)
FNmax(a%, b%)

Spool Simple functions to control
*SPOOL and printer output.

PROCopen_spool(file$)
PROCclose_spool
PROCprinter_on
PROCprinter_off
PROCscreen_on
PROCscreen_off
PROCpause_spooling
PROCresume_spooling
PROCset_output_state(screen%, printer%, spool%)

UI User interface code, including rou-
tines to ask the user for parameters
and check they are within an al-
lowed range.

FNget_num_param(prompt$, default, min, max)
FNget_str_param(prompt$, default$)
FNask_yes_no(prompt$)
FNget_letter_param(prompt$, valid$, default$)
FNget_letter_param_as_num(prompt$, valid$, default$)
PROCprint_centered(s$)
PROCdefine_colours

YOGILIB Touchscreen/five-choice code for
Yogi.

Box definitions, touchscreen definitions, screen coordinate handlers.

4

The applications

For Rudolf

Program Description
2-Discap Two-stimulus discriminated approach task.

2-DA-Om Two-stimulus discriminated approach task with an omission contingency.

2-CRf Two-stimulus conditioned reinforcement (acquisition of new response)

AdjDelay Adjusting-delay task where delay can vary after every choice trial. (Never used.)

Bradshaw Original (RDR/ND/RNC) version of Mazur/Bradshaw's adjusting-delay task.

CapTrain Train on an FR1 schedule for a capped number of reinforcers.

CRf Conditioned reinforcement. CR lever causes delivery of an abbreviated form of the conditioned rein-
forcer from DiscAp; NCR lever has no programmed consequence. Also contains a timer to assist
with intracerebral infusion.

DiscAp Discriminated approach. Light/sound CS predicts sucrose.

DTrain Trains a schedule in which nosepokes initiate forced-choice trials.

Evenden One pellet now, or four pellets later? Systematic variation of delay across a session. Delays are 0, 10,
20, 40, 60s for a session length of 100 min.

EvInfuse For intracerebral infusions. Delays are 0, 20, 60s for a session length of 60 min.

EvNoDel Evenden task with no delays, but still 100 s trial period. (Can be performed with the main !Evenden
application, but this simplifies use.)

FVRIP FR, VR, FI, VI and probabilistic simple schedules. Note: the variable schedules are not random in-
terval (RI) or random ratio (RR) schedules; they pick an interval or ratio from a range. There are
some problems with this approach.

Infuse Simple timer to assist with intracerebral infusion.

Lardy Gives free pellets at high speed.

PIT-mult Tests ‘specific’ and ‘general’ Pavlovian-instrumental transfer. Contains several training and testing
stages.

PIT-simp Simple Pavlovian-instrumental transfer.

RDiscrim Discrete-trials reinforcer discrimination task. INCOMPLETE.

Richards Adjusting-magnitude task.

SP-PIT Sensory preconditioning, using appetitive simple PIT as the measure of conditioning.

TestCBox Box test program for combined sucrose/pellet boxes (currently in use).

TestIBox Box test program for ‘intermediate’ boxes (no longer in use).

TestPBox Box test program for pellet-only boxes (no longer in use).

TestSBox Box test program for sucrose-only boxes (no longer in use).

YokedCRf Destined to be a yoked conditioned reinforcement application. INCOMPLETE.

5

For Anastasia

5choice Five-choice task, designed to mimic the behaviour of the Paul Fray original but to provide better out-
put (including recording each response with its time and location). IN PROGRESS, AC MODIFY-
ING. ALSO NEEDS “TESSDIR” REFERENCES CHANGED TO “RUDOLFDIR”. YOGI NEEDS
A COPY.

5cb-test Box test program for 5-choice boxes.

To use Yogi’s applications (e.g. !AttMem), it’d be necessary to change the call to PROCfive_hole_boxes_yogi to PRO-
Cfive_hole_boxes.

For Yogita

AttMem Two-stage five-choice task with attentional/mnemonic demands. I’M MISSING THE LATEST
VERSION.

YScrTest Tests multiple VDU output system (LCD displays for touchscreens)

YTchTest Tests touchscreen apparatus (i.e. conventional Arachnid inputs/outputs, plus touchscreen sensors and
interface)

To use other five-choice applications (e.g. !5choice, !5cb-test), it’s necessary to change the call to PRO-
Cfive_hole_boxes (Filippo/Anastasia) to PROCfive_hole_boxes_yogi.

For Felicity

TestExt Records responses on two levers in extinction. For cocaine/sucrose devaluation experiments. (Self-
contained program; does not use libraries.)

For Yia-Ping

TestYBox Box test program for Yia-Ping’s boxes.

To use other applications (e.g. !Evenden), it’s necessary to change the call to PROCcombined_boxes (Rudolf) to PRO-
Cyiaping_boxes.

For JP

TestTch Tests marmoset touchscreen apparatus.

Bugs
• Potential for division by zero in DiscAp and 2-DiscAp if the rat never pokes in the VI? (PROCfinal_output; possi-

bly elsewhere).
•

